PENERAPAN ANALISIS LASSO DAN GROUP LASSO DALAM MENGIDENTIFIKASI FAKTOR-FAKTOR YANG BERHUBUNGAN DENGAN TUBERKULOSIS DI JAWA BARAT

  • Stephan Chen Department of Statistics, IPB University, Indonesia
  • Khairil Anwar Notodiputro Department of Statistics, IPB University, Indonesia
  • Septian Rahardiantoro Department of Statistics, IPB University, Indonesia
Keywords: group LASSO, LASSO, tuberculosis, West Java

Abstract

Tuberculosis is the deadliest infectious disease in Indonesia, and West Java is a province with the largest number of tuberculosis cases in Indonesia. This research was conducted to identify variables and groups of variables that could explain the number of tuberculosis cases in West Java. The data used has many explanatory variables, and these variables form groups. LASSO and group LASSO analysis can be used for variables selection and handle data that has many explanatory variables, and group LASSO analysis can be used on data with grouped variables. The results of the LASSO analysis, variables that can explain the number of tuberculosis cases in West Java are the number of people with disabilities, the number of pharmacy staff, the number of malnourished people, the number of people working and the number of cities. According to the group LASSO analysis, the variables that can explain the number of tuberculosis cases in West Java are variables in the health and environmental groups. The government can focus on these factors if they want to reduce the number of tuberculosis cases in West Java.

Downloads

Download data is not yet available.

References

Andini, W. (2018). 2018. Retrieved March 12, 2019, from Tuberkulosis (TBC), infeksi penyebab kematian nomor 1 di Indonesia. website: http://hellosehat.com/pusat-kesehatan/tuberculosis-tbc/fakta-tbc-di-indonesia.

Dewi, Y. S. (2010). OLS, LASSO dan PLS pada data mengandung multikolinearitas. Jurnal Ilmu Dasar, 11(1): 83–91.

Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: the lasso and generalizations. Florida (US): Chapman and Hall/CRC.

Kinansi, R. R. (2017). Pendugaan data hilang pada rancangan percobaan uji daya bunuh ekstrak etanol akar tumbuhan tuba terhadap kecoa amerika (Periplaneta americana) menggunakan metode yates. Buletin Penelitian Kesehatan, 45(3): 205–214.

Prabowo, F. K. H., Wilandari, Y., & Rusgiyono, A. (2015). Pemodelan pertumbuhan ekonomi jawa tengah menggunakan pendekatan least absolute shrinkage and selection operator (LASSO). Jurnal Gaussian, 4(4): 855–864.

Pratama, W., & Wulandari, S. P. (2015). Pemetaan dan pemodelan jumlah kasus penyakit tuberculosis (TBC) di provinsi Jawa Barat dengan pendekatan geographically weighted negative binomial regression (GWNBR). Jurnal Sains Dan Seni ITS, 4(1): D37–D42.

Sejati, A., & Sofiana, L. (2015). Faktor-faktor terjadinya tuberkulosis. KEMAS: Jurnal Kesehatan Masyarakat, 10(2): 122–128.

Soleh, A. M., Wigena, A. H., Djuraidah, A., & Saefuddin, A. (2015). Statistical downscaling to predict monthly rainfall using linear regression with L1 regularization (LASSO). Applied Mathematical Sciences, 9(108): 5361–5369.

Soleh, A. M., & Aunuddin. (2013). LASSO: solusi alternatif seleksi peubah dan penyusutan koefisien model regresi linier. Forum Statistika Dan Komputasi, 18(1).

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1): 267–288.

Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1): 49–67.

Published
2020-02-28
How to Cite
Chen, S., Notodiputro, K., & Rahardiantoro, S. (2020). PENERAPAN ANALISIS LASSO DAN GROUP LASSO DALAM MENGIDENTIFIKASI FAKTOR-FAKTOR YANG BERHUBUNGAN DENGAN TUBERKULOSIS DI JAWA BARAT. Indonesian Journal of Statistics and Its Applications, 4(1), 39-54. https://doi.org/10.29244/ijsa.v4i1.510
Section
Articles