Determinant Factors of Working Children based on Conditional Logistics Regression for Matched Pairs Data

Determinan Anak Bekerja Berdasarkan Model Regresi Logistik Bersyarat untuk Data Berpasangan

Authors

  • Rizky Zulkarnain Badan Pusat Statistik, Indonesia
  • Tri Listianingrum Badan Pusat Statistik, Indonesia
  • Khairil Anwar Notodiputro Department of Statistics, IPB University, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v5i1p161-172

Keywords:

bias, case-control, conditional maximum likelihood, confounding, observational study

Abstract

Working children may create problem since it relates to human right as well as to the development of children especially in getting sufficient education. This paper discusses determinant factors of working children by using conditional logistics regression for matched pairs data. Matching is employed to adjust confounding factors and to avoid bias. In this paper there are three confounding factors that have been considered, i.e. residential area, gender, and income of household head. The results showed that the conditional regression model outperformed the standard regression model. The number of household members, whether the head of household was married or single, age of the head of household, educational attainment of the head of household, as well as the work status of the head of household were the determinant factors of the working children.

Downloads

Download data is not yet available.

Author Biography

Khairil Anwar Notodiputro, Department of Statistics, IPB University, Indonesia

Department of Statistics

References

Agresti, A. (2002). Categorical Data Analysis, Second Edition. New Jersey: John Wiley & Sons, Inc.

Agresti, A. (2007). An Introduction to Categorial Data Analysis, Second Edition. New Jersey: John Wiley & Sons, Inc.

Azen, R., Walker, C.M. (2011). Categorical Data Analysis for the Behavioral and Social Sciences. New York: Routledge Taylor & Francis Group.

Bellamy, C. (1997). Laporan Situasi Anak di Dunia 1997. Jakarta: UNICEF.

Haszelinna, D., Arabsheibani, G.R. (2016). Child Labour in Indonesia: Supply-Side Determinants. Economic and Finance in Indonesia, 62(3): 162-179.

Hosmer, D.W., Lemeshow, S. (2000). Applied Logistic Regression, Second Edition. New Jersey: John Wiley & Sons, Inc.

Iryani, B.S., Priyarsono, D.S. (2013). Eksploitasi terhadap Anak yang Bekerja di Indonesia. Jurnal Ekonomi dan Pembangunan Indonesia, 13(2): 177-195.

James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An Introduction to Statistical Learning with Application in R. New York: Springer.

Kemenakertrans. (2014). Peta Jalan (Roadmap) Menuju Indonesia Bebas Pekerja Anak Tahun 2022. Jakarta: Kementerian Tenaga Kerja dan Transmigrasi.

Kuo, C-L., Duan, Y., Grady, J. (2018). Unconditional or Conditional Logistic Regression Model for Age-Matched Case-Control Data? Frontiers in Public Health, Maret 2018(6):57.

Priyambada, A., Suryahadi, A., Sumarto, S. (2005). What happened to child labor in Indonesia during the economic crisis: The trade-off between school and work. SMERU Working Paper September 2005, SMERU Research Institute.

Thapa, S., Chhetry, D., Aryal, R.H. (1996). Poverty, Literacy and Child Labor in Nepal: A District Level Analysis. Asia Pacific Population Journal, 11(3): 3-14.

Usman, H. (2002). Determinan dan Eksploitasi Pekerja Anak di Indonesia [Tesis]. Jakarta: Universitas Indonesia.

Utama, R.S., Handayani, D. (2020). Pekerja Anak di Indonesia: Peran Penawaran dan Permintaan Ketenagakerjaan. Jurnal Ekonomi Kuantitatif Terapan, 13(1): 145-157.

Downloads

Published

2021-03-31

How to Cite

Zulkarnain, R., Listianingrum, T., & Notodiputro, K. A. . (2021). Determinant Factors of Working Children based on Conditional Logistics Regression for Matched Pairs Data: Determinan Anak Bekerja Berdasarkan Model Regresi Logistik Bersyarat untuk Data Berpasangan. Indonesian Journal of Statistics and Its Applications, 5(1), 161–172. https://doi.org/10.29244/ijsa.v5i1p161-172

Issue

Section

Articles