Comparison of Functional Regression and Functional Principal Component Regression for Estimating Non-Invasive Blood Glucose Level
Perbandingan Metode Regresi Fungsional dan Regresi Komponen Utama Fungsional untuk Menduga Kadar Glukosa Darah pada Alat Non-Invasif
DOI:
https://doi.org/10.29244/ijsa.v5i1p14-25Abstract
The calibration method is an alternative method that can be used to analyze the relationship between invasive and non-invasive blood glucose levels. Calibration modeling generally has a large dimension and contains multicolinearities because usually in functional data the number of independent variables (p) is greater than the number of observations (p>n). Both problems can be overcome using Functional Regression (FR) and Functional Principal Component Regression (FPCR). FPCR is based on Principal Component Analysis (PCA). In FPCR, the data is transformed using a polynomial basis before data reduction. This research tried to model the equations of spectral calibration of voltage value excreted by non-invasive blood glucose level monitoring devices to predict blood glucose using FR and FPCR. This study aimed to determine the best calibration model for measuring non-invasive blood glucose levels with the FR and FPCR. The results of this research showed that the FR model had a bigger coefficient determination (R2) value and lower Root Mean Square Error (RMSE) and Root Mean Square Error Prediction (RMSEP) value than the FPCR model, which was 12.9%, 5.417, and 5.727 respectively. Overall, the calibration modeling with the FR model is the best model for estimate blood glucose level compared to the FPCR model.
Downloads
References
Bellman RE. 1961. Adaptive Control Process: a Guided Tour, Princeton University Press, New Jersey : Princeton.
Berrendero et al. 2011. Principal Components for Multivariate Functional Data. J Elsevier Science Direct Computational Statistics and Data Analysis. 55(2011): 2619–2634.
Ghozali I. 2013. Aplikasi Analisis Multivariate dengan Program SPSS. Edisi Ke-7. Semarang (ID): Badan Penerbit Universitas Diponegoro.
John PH, Thomas JP. 1992. The Effect of Influential Outliers on Parameter Estimation in Regression Analysis. Biofeedback and Self-regulation 17(2):153-156.
Lestari DN. 2014. Pemodelan statistical downscaling dengan analisis komponen utama fungsional untuk prediksi curah hujan [tesis]. Bogor (ID): Sekolah Pascasarjana, Institut Pertanian Bogor.
Montgomery D, Peck EA. 1982. Introduction to Linear Regression Analysis. New York (US): John Wiley & Sons.
Naes T, Issakson T, Fearn T, Davies T. 2002. Multivariate Calibration and
Classification. United Kingdom (GB): NIR Publications Chichester.
Notodiputro KA. 2003. Pendekatan Statistika dalam Kalibrasi. Conference on Statistical and Mathematical Science of Islamic Society in South East Asia Region. Bandung, 25-26 April 2003.
Risqa A. 2016. Pemodelan Regresi Komponen Utama Fungsional pada Data Spektroskopi. [Tesis]. Bogor (ID): IPB University.
Saeys, W., de Ketelaere, B. and Darius, P. (2008) Potential Applications of Functional Data Analysis in Chemometrics. Journal of Chemometrics, 22, 335-344.
Shang HL. 2011. A Survey of functional principal component analysis. Departement of econometrics and business Statistics Monash University, (working papers, 06/11).