PENERAPAN CYLINDRICAL DAN FLEXIBLE SPACE TIME SCAN STATISTIC DALAM MENGIDENTIFIKASI KANTONG KEMISKINAN DI PULAU JAWA TAHUN 2011-2015

  • Zaima Nurrusydah Badan Pusat Statistik Provinsi Sulawesi Tenggara, Indonesia
  • Erfiani Erfiani Department of Statistics, IPB University, Indonesia
  • Bagus Sartono Department of Statistics, IPB University, Indonesia
Keywords: cylindrical, flexible, poverty hotspots, space time scan statistic

Abstract

      The Indonesian government formed the National Team for the Acceleration of Poverty Reduction (TNP2K) to eradicate poverty. TNP2K requires identification of priority areas or poverty hotspots so that the program can be targeted. Scan statistic is one of the most widely used methods to identify poverty hotspots. Cylindrical STSS uses cylindrical scanning windows while most geographical areas are not circular. Flexible STSS is able to detect poverty hotspots in a flexible form. This study aims to identify poverty hotspots using Cylindrical and Flexible STSS then compare the results of both and then determine the best STSS method. Cylindrical STSS tends to have wider hotspots than Flexible STSS. There are a number of districts that are not eligible to be included as poverty  Flexible STSS is able to produce better poverty hotspots by not including these districts  Poverty hotspots produced by Flexible STSS have higher LLR values. The more suitable STSS method has optimal K values and high suitability with TNP2K priority areas. Cylindrical STSS has an optimal K value when K = 8 and 9. Flexible STSS has a constant LLR value. Flexible STSS has a higher LLR value than Cylindrical STSS at each K value. Flexible STSS with K = 9 has optimal K and high suitability with TNP2K priority areas so that it is the more suitable STSS method to identify poverty hotspots in Java.

References

[BPS] Badan Pusat Statistik. (2012). Data dan Informasi Kemiskinan Kabupaten/kota Tahun 2011. Jakarta (ID): Badan Pusat Statistik.

[BPS] Badan Pusat Statistik. (2013). Proyeksi Penduduk Indonesia. Jakarta (ID): Badan Pusat Statistik.

[BPS] Badan Pusat Statistik. (2018). Profil Kemiskinan di Indonesia Maret 2018. Jakarta (ID): Badan Pusat Statistik.

[IDEAS] Indonesia Development and Islamic Studies. (2017). Peta Kemiskinan Indonesia: Kondisi, Kinerja, dan Prospek Penanggulangan Kemiskinan Kabupaten-Kota. Jakarta (ID). Indonesia Development and Islamic Studies.

[TNP2K] Tim Nasional Percepatan Penanggulangan Kemiskinan. (2014). Upaya Khusus Penurunan Tingkat Kemiskinan. Jakarta (ID): Tim Nasional Percepatan Penanggulangan Kemiskinan.

Allévius, B. (2018). Scanstatistics: Space-time anomaly using scan statistics. The Journal of Open Source. 3(25):515.

Betti, G., Ballini, F., & Neri, L. (2006). Hotspot detection and mapping of poverty. Center for Statistical Ecology and Environmental Statistics, 15.

Chaput, E. K., Meek, J. I., & Heimer, R. (2002). Spatial analysis of human granulocytic ehrlichiosis near Lyme, Connecticut. Emerging infectious diseases, 8(9), 943-948.

Columbia University. (2018). Spatiotemporal Analysis [Internet]. [diakses pada Desember 2018]. tersedia pada https://www.mailman.columbia.edu/research/.

Fahim, M., Erfiani, Sartono, B. (2017). A Space-Time Scan Statistic for Detecting Poverty Hotspot in Java Island. International Journal of Scientific & Engineering Research, 8(8): 1933-1937.

Kulldorf, M. (2018). SaTScan User Guide [Internet]. [diakses pada Juni 2018]. tersedia pada https://www.satscan.org/cgibin/satscan/

Kusumaningrum, D. (2010). Hotspot Analysis on Poverty, Unemployment, and Food Security in Java, Indonesia [Thesis]. Bogor (ID): Institut Pertanian Bogor.

Noviyanti, R. A., & Zain, I. (2014). Pendekatan Small Area Estimation Pada Scan Statistic Untuk Pendeteksian Kantong Kemiskinan. Penelitian ini disampaikan pada Prosiding Seminar Nasional Matematika, Universitas Jember.[19 November 2014].

Nurcahayani, H. (2014). Pemodelan Spasial Kemiskinan dengan Mixed Geographically Weighted Poisson Regression dan Flexibly Shaped Spatial Scan Statistic [Thesis]. Surabaya (ID): Institut Teknologi Sepuluh November.

Ribeiro, S. H. R., & Costa, M. A. (2012). Optimal selection of the spatial scan parameters for cluster detection: a simulation study. Spatial and spatio-temporal epidemiology, 3(2), 107-120.

Tango, T., & Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters. International journal of health geographics, 4(1), 11-25.

Published
2019-06-30
Section
Articles