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Abstract. The mixed effects model has been used for modelling the fertilizer response to predict the optimum doses.
However, a major restriction of this type of models is the normality assumption of the random parameter component.
The purpose of this paper is to investigate the performance of random parameter models of fertilizer dosing with
independent skew-normally distributed random parameter components. We compare the Linear Plateau, Spillman-
Mitscherlich, and Quadratic random parameter models with different random effects distribution assumption, i.e. the
normal, Skew-normal, Skew-#, Skew-slash, and Skew-contaminated distributions and the random errors following
symmetric normal independent distributions. The method is applied to datasets of multi-location trials of potassium
fertilization of soybeans. The results show respectively that the Skew-f Model is the best Linear Plateau Response
Model, the Normal Model for Spillman-Mitscherlich Response Model, and the Skew-# Model for the Quadratic
Response Model. However, overall the normal Spillman-Mitscherlich Response Model is the best model for soybean
yield prediction.

Keywords: Bayesian estimation, Dose-response model, Random parameter model, Skew-normal independent
distributions.

INTRODUCTION

Many linear and nonlinear functions have been used for describing multi-environment crop response to
fertilizer, such as linear plateau and quadratic functions. The model parameters usually estimated using least
squares method assuming that the model has a fixed effect and the random error terms were independent and
normally distributed with a constant variances ([1]-[2]). However, this approach is unrealistic because it
ignores the variability that probably exist between site-years.

An alternative model is the mixed effects approach ([3]-[6]). This approach allows the parameters to have
a random effect component that represent between sites or years variability. The random parameter models
have been found to outperform the fixed parameter models to model dose-response relationships ([5], [7]-
[8]). Furthermore, the quadratic functional form commonly used is not always the best model. [7] and [9]
showed that the stochastic linear plateau model and the Mitscherlich exponential type functions outperform
the quadratic form. In a similar way, [8] showed that the stochastic linear plateau function is more adequate
than the stochastic quadratic plateau function for corn response to Nitrogen fertilizer.

The random parameter components and the errors are usually taken as normally distributed random
variables ([5]-[8]). However, the normality and symmetry assumptions may be too restrictive because in
practice departures from normality is common. Particularly, [10] and [11] concluded that the field crop yield
distributions are in general non-normal or non-lognormal. The degree of skewness and kurtosis vary by crop
and by the amount of nutrients uptake. In addition, (random) weather effects could result in positively or
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negatively skewed probability functions. Therefore, [12] suggested the beta distribution for the random
parameter component of the linear plateau function of wheat response to Nitrogen fertilizer.

Lachos et al. [13] advocated the use of the Skew-normal independent distribution for robust modeling of
linear mixed models. The Skew-normal independent distribution is a class of asymmetric, heavy-tailed
distributions that includes the Skew-normal distribution, Skew-f, Skew-slash and the Skew-contaminated
normal distributions. The class of Skew-normal distributions accommodate observations with high skewness
and heavy tails as well as the normal distribution.

Traditionally, fertilizer-dose response models are estimated by means of maximum likelihood estimation
(ML) ([5]-[8]). However, for nonlinear models and small sample sizes ML is frequently biased ([14]). In
addition, convergence can be a problem even with careful scaling and good starting values. Bayesian
estimation is an alternative to ML. The advantages of Bayesian estimation are that the results are valid in
small samples and that convergence in the case of nonlinear models is not an issue ([12], [14]-[15]).

The purpose of this paper is Bayesian estimation of random parameter dose (fertilization)-response (yield)
models for yield data that is Skew heavy-tailed distributed.

The Normal Mixed Effects Model

In general, a Normal mixed effects model reads:

Y =n(¢, X)) +¢€;, ¢: = A + B;b;, (1)
with
(bi, €) ™Nny1q (0, Diag (%, 0215),
where the subscript i is the subject index, i=1,....,n; ¥; = (yl-l,...,ymi)T is an; X1 vector of n;

observed continuous responses for subject i, 7;(¢; X)) = {n(P;, Xi1), ...,n(qbi,Xmi)} T with n(.) the
nonlinear or linear function of random parameters ¢;, and covariate vector X;, 4; and B; are known design
matrices of dimensions n; X p and n; X g, respectively, B is the p X 1 vector of fixed effects, b; is the ¢ X
1 vector of random effects, and €; is the n; X 1 vector of random errors, and I,; denotes the identity matrix.
The matrices £ = Z(a) with unknown parameter a is the ¢ X g unstructured dispersion matrix of b;, 62 the
unknown variance of the error term. When 1(.) is a nonlinear parameter function, we have the Normal
NonLinear Mixed Model (N-NLMM); if n(.) is a linear parameter function, we have the N-Linear Mixed
Model (N-LMM).

It follows that
b; "IN, (0,%) and €; "INy, (0,021,

and they are uncorrelated, since Cov(b;, €;) = 0 ([16]-[17]).

Skew-Normal Independent (SNI) Distributions

A skew-normal independent distribution is defined as the p-dimensional random vectory = u + U'/?Z,
where u is a location vector, Z is a multivariate skew-normal random vector with location vector 0, scale
matrix ¥ and skewness parameter vector 4, i.e. Z ~ SN,(0,Z,4) ([12]). Furthermore, U is a positive weight
random variable with cumulative distribution function (cdf) H(u|v) and probability density function (pdf)
h(u|v), v is a scalar or vector of parameters indexing the distribution of the scale factor U. Given U, Y
follows a multivariate skew-normal distribution with location vector 0, scale matrix u~'Z and skewness
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parameter vector 4, i.e., Y|U =u ~ SNp(u,u‘lz, A). Thus, the SNI distributions are scale mixtures of the
skew-normal distributions denoted by ¥ ~ SNI,,(u, Z, 4, H). The marginal pdf of ¥ is

fly)=2 f (¥ puT'E)P (ul/zﬂz‘l/z(y - u)) dH (ulv),
0

The skew-normal independent distribution is a group of asymmetric heavy-tailed distribution of robust
alternative to the routinely used of normal distribution for mixed effects model ([18]-[21]). A convenient
stochastic representation of Y, follows from [19]-[20]:

Y = u + AT + TV/2T,, )

where A = X£V/28,T = £V/2(1 — 687)2"/? = £ — AA”, I denotes the identity matrix and & = /(1 +

r+AATY=1/2p
ATA)V? A= [1_;T(+F+AZT)_1A]1 — 5 =T+ AN, T = |T|, Ty ~ N;(0,1) and Ty ~ N, (0, 1,).

When 4 = 0, the class of SNI distributions reduces to the class of thick-tailed normal independent (NI)
distributions ([22]-[24]). The probability density function (pdf) is f(y) = fooo ¢, (y; m,u™'Z)dH (u|v),
denoted as ¥ ~ N,(u, Z, H).

The SNI-Mixed Effects Model
Using the general framework (1), the following general SNI-Mixed Model (SNI-MM) is defined as:

b,"*SN1,(0,Diag (%), A, H) and €"NI,,(0,02I,,H),i = 1,.....,n.

where the random effects are assumed to have a multivariate SNI distributions and the random errors are
assumed to have a NI distribution.

Prior Distributions and Joint Posterior Density

Below, we apply a Bayesian framework based on the Markov Chain Monte Carlo (MCMC) algorithm to
infer posterior parameter estimates. Using the representation (2), the general mixed model can be formulated
in hierarchical for i = 1, .....,n, as follows:

Yilb;, U; = u; "Ny, (1 (A + Biby, X)), ui ' 621y,).
b|T; = t;, U; = ;" N, (At;, u;'T).
T;|U; = w;"HN, (0,u; ).
U; ¥H (u;|v).

where HN, (0,0?) is the half- N;(0,0?) distribution, A = £Y/2§ and T = £ — AAT, with § = /(1 + AT2)1/2
and X'/2 the square root of ¥ containing q(q + 1)/2 distinct elements (17], [19], [24]).

Let Y= (y!, ..., yDT, b= (bT,...,bD)T, u=(uy, ..., u)", t=(ty,..,t,)T . Then, the complete
likelihood function associated with (y7, bT,u”,t")7, is given by
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L(61Y,b,wu,t) « [T11[¢n, (¥i; 1(AiB + Biby, X.),ui 021, )b (bis Aty, ui 'T) X ¢y (855 0,u7 DA (w;|v)].

To complete Bayesian specification, we need to consider prior distributions for all the unknown
parameters 0 = (B7,02,a”,AT,v")T . We  consider B~N,(Bo Sg), 02~1G(qo/2, 2/
2), T~1W, (A5, v), A~Ny, (Ao, Sa) ([17], [19]). For v we take v~Exp(t/2)1 3,0y for the Skew-¢ (S7) model,
Gamma (a, b) for the Skew-slash (SSL) model. Furthermore, U(0, 1) for v, and Beta (p,, p;) for v, for the
Skew-contaminated normal (SCN) model.

Assuming independency of the parameter vector, the joint prior distribution of all unknown parameters is

m(0) = n(B)m (o) m(D)m(D)n(v).

Combining the likelihood function and the prior distribution, the joint posterior density of all unknown
parameters is

n
7(8,03,T,0,b,u,tly) o | [90,(v61CAB + Buby, X, 4702 11 ) g (i Aty w7 D)
i=1

X ¢y (t; 0,u; Dh(u;|v)]7(8).

Model Comparison Criteria

The expected Akaike information criterion (EAIC) and the expected Bayesian information criterion
(EBIC) are a deviance-based measure appropriate for Bayesian model selection ([25]-[26]).

Let @ and Y = (y;,...,¥,)T be the entire model parameters and data, respectively. Define D (8) =
—2Inf(y|0) = =2 YN, Inf(y;|@), where f(y;|@) is marginal distribution of y;, then E [D (8)] is a measure
of fit and can be approximated by using the MCMC output in a Monte Carlo simulation. This index is given
by D = %Zlk(=1 D(8%)). Where 8% is the k™ iteration of MCMC chain of the model and K is the number of

iterations.

The expected Akaike information criterion (EAIC) and the expected Bayesian information criterion
(EBIC) define as follows

EAIC =D + 2p, and EBIC = D + p log(N)

where D is the posterior mean of the deviance, p is the number of parameters in the model, N is the total
number of observations. These criteria penalizing models with more complexity. Smaller value of EAIC and
EBIC indicate a better fit ([19]).

CASE STUDY

Data

The dataset is obtained from 19 multi-location trials of potassium fertilization of soybeans. The
experiments were carried out between 2002 and 2014. The soil types are Ultisols, Inceptisols, Vertisols, and
Oxisols with soil potassium contents varying from very low to very high. Common soybean varieties were
used. Each experiments consisted of five levels of potassium fertilization. The doses applied were 0, 40, 80,
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160 and 320 kg ha™! of KCI. The plots were 6 by 5 m, or 4 by 5 m arranged in a randomized complete block
design with three to nine replications. The response variable was soybean yield (t ha'). The yields reported
are averages over replications ([27]-[29]).

Response functions

We consider three response functions: the Linear Plateau (LP), the Spillman-Mitscherlich (SM) and the
Quadratic functions (Q).

The stochastic LP is defined as follows:
Y, = min(a’l + (ay+by)X;; up + bsi) +by; + g 3)

where for location i, Y; is the soybean yield; X; the potassium fertilizer dose; a; the intercept parameter; a,
the linear response coefficient; u, the plateau yield; by; , by;, and bs; are the random effects; and ¢; is the

random error term. In term of (1), @ = (a;, &z, a3)T b; = (byj, by, b3)T ; bideNIq(O,Z,A,H) and
€"N1,, (0,021, H).

The stochastic SM reads:

Y; = B1— (B2 + by) exp ((—P5 + b3) X;) + by + & “4)

where f; is the maximum yield attainable by potassium fertilization; 3, is the yield increase; (3 is the ratio of
consecutive increments of the yield; all other parameters, variables and distributions as in (3).

The stochastic Q is defined as:
Y =y + (V2 + bo)X; + (y3 + b3)X? + by + & (5)

where y, is the intercept parameter whose position (value) can be shifted up or down by the random effect
byi; V2 is the linear response coefficient with random effect parameter b,;; y; is the quadratic response
coefficient whose position can be shifted up or down by the random effect bs;; ¥ = (y1,72, ¥3)7; all other
variables and distributions as in (3) ([7]-[9]).

Statistical Analysis

The datasets was used to identify the model with the best fit among the random parameter models of
fertilizer dosing. Several statistical models with differing distribution in the random effects and random errors
are compared. These models are:

Model 1: Skew-normal distribution for the random effects and Normal distribution for the random errors
(SN-N)

Model 2: Skew-t distribution for the random effects and Student-¢ distribution for the random errors (St-7)

Model 3: Skew-slash distribution for the random effects and slash distribution for the random errors (SSL-
SL)

Model 4: Skew-contaminated normal distribution for the random effects and contaminated normal
distribution for the random errors (SCN-CN).

Model 5: Normal distribution for the random effects and random errors (N-N)

The following independent priors were considered to perform the Gibbs sampler, B4 ~N(0,10%),
0?~16(0.1,0.1), T'~16(0.1,0.1), A~ N(0,0.001), and v~ Exp(0.1)I(2,) for the Skew-t model,
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v ~ Gamma(0.1,0.01) for the skew-slash model, v; ~ Beta(1,1) and v, ~ Beta (2,2) for the skew-
contaminated normal model, respectively.

For each of the models, we ran three parallel independent chains of the Gibbs sampler with size 50 000
iterations for each parameter with thinning of 5 and an initial burn in of 25 000. We monitored chain
convergence using trace plots, autocorrelation plots and the Brooks-Gelman-Rubin scale reduction factor (R)
([30]). To avoid non-convergence, we normalized the original doses (subtracted the mean and divided by the
standard deviation) which gave: -1.06, -0.70, -0.35, 0.35, and 1.76, respectively ([31]). We fitted the models
using the R2jags package available in R ([32]).

RESULTS AND DISCUSSION

Soybean yield data

Figure 1 shows the histogram and normal Q-Q plot of soybean yield data for 19 locations, while the
boxplot is presented in Fig. 2. The figures indicates non-normality (skew heavy-tailed) pattern. The Q-Q plot
does not show a straight line, while the boxplot shows asymmetry and an outlier. Thus, it seems appropriate
to fit a skewed heavy-tailed model to the data.
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FIGURE 1. Histogram and Normal Q-Q plot of soybean yield data
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FIGURE 2. Boxplot of soybean yield data

Linear Plateau Response Models

Based on the EAIC and the EBIC in table 1, we find that among the SNI models the Skew-¢ (St-f) Model
gives the best fit, followed by the Skew-slash (SSL-SL), Skew-contaminated normal (SCN-CN) and Skew-
normal (SN-N) Model. We furthermore find that the Sz-# Model outperform the normal distributions. Thus,
the S¢-t Model is the best Linear Plateau Response Model.

TABLE 1. The Linear Plateau Models

Paramete _ N-N SN-N St-¢ SSL-SL SCN-CN
' Mean SD Mean SD Mean SD Mean SD Mean SD

a 1.473  0.114 1.471 0.113 1.533 0.143 1.469 0.151 1.509  0.159
o 39.968 20.482 29.193 19320  29.417 19.604  29.657 19.531 28982 18.929
Wp 1.878  0.129 1.880 0.134 1.843 0.217 1.826 0.234 1.882  0.246
o% 0.139  0.014  0.020 0.004 0.015 0.004 0.013 0.004 0.014  0.005
d 0.467  0.095  0.250 0.114 0.173 0.089 0.148 0.076 0.160  0.093
d; 13.135 11.964 49.074 237.868 30.677 129.636  30.903 121.481 26.718 92.546
ds 0.306  0.081 0.121 0.074 0.071 0.045 0.062 0.039 0.069  0.046
M 0.056 0.467 -0.006 0.262 -0.024 0.265 0.017  0.288
A2 0.059 0.654 0.005 0.338 -0.015 0.325 0.003  0.367
A3 0.175 1.036 -0.007 0.516 -0.039 0.529 0.036  0.573

v (v1) 5.834 3.018 2.846 1.748 0.473  0.265
V2 0.513  0.215

EAIC -93.56 -85.78 -98.03 -89.47 -88.35

EBIC -93.71 -86.00 -98.28 -89.71 -88.61

Table 1 furthermore shows that for the St Model, all the fixed effects, i.c., the intercept parameter (@),

the linear response coefficient (@;), the plateau yield u,, and the random effects (d;, d,, d3) are significant.
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Spillman-Mitscherlich Response Models

Based on the EAIC and EBIC in table 2 we find the following rankings of the SNI models: Sz-# < SSL-SL
< SN-N < SCN-CN. However, we observe that the normal distributions outperform the Sz-r Model, and that
the asymmetry parameters (14, 1,, 43) of the St-r Model are not significant. Therefore, the N-N Model is the
best Spillman-Mitscherlich Response Model.

TABLE 2. The Spillman-Mitscherlich Models

Parameter N-N SN-N St-¢ SSL-SL SCN-CN
Mean SD Mean SD Mean SD Mean SD Mean SD

B 1.950  0.111 1982  0.110 1.924 0.095 1949 0.106 1960 0.109
B2 0.032  0.013 0.073  0.025 0.059 0.033 0.074 0.036 0.073 0.033
B3 2.495 0.415 1.762 0294 1.771 0311 1.699 0310 1.740 0.313
o% 0.104  0.010 0.013  0.003 0.010 0.003 0.009 0.003 0.011 0.003
d; 0.465 0.087 0220  0.085 0.148 0.072 0.133  0.064 0.170 0.077
d> 0.008 0.006 0.005 0.005 0.004 0.002 0.004 0.002 0.004 0.002
ds 0.623 0.199 0364 0289 0.283 0287 0275 0240 0315 0.269
M 0.008 0.101 -0.002 0.071  0.000 0.069 0.001 0.063
A2 0.061 0.785 -0.013 0.441 0.003 0423 0.004 0.434
A3 0.006  0.105 -0.001 0.086 0.000 0.067 0.001 0.067

v (v1) 5413 2733 3.197 1769 0317 0.235
V2 0.549  0.205

EAIC -147.72 -128.10 -144.88 -130.58 -127.70

EBIC -147.88 -128.33 -145.13 -130.83 -127.96

For the N-N Model, the fixed effects, i.e., the maximum yield coefficient (f;), the increase in yield (3,),
the ratio of successive increment () and the random effects (d,, d,, d3) are significant.

The Quadratic Response Models

Comparison of the EAIC and EBIC in table 3 leads to the following rankings: S¢-# < SSL-SL < SCN-CN <
SN-N. The results furthermore show that the Skew heavy-tailed distributions outperform the skew normal and
normal distribution, and that overall the Sz Model is the best Quadratic Response Model.
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TABLE 3. The Quadratic Models

Parameter _ N-N SN-N St-t SSL-SL SCN-CN
Mean SD Mean SD Mean SD Mean SD Mean SD

Y1 1.796 0.107 1.794  0.126 1.810  0.088 1.786  0.102 1.788  0.101
Y2 0.510 0.072  0.506  0.101 0.351 0.063  0.401 0.080  0.393  0.081
Y3 -0.386  0.072 -0.389 0.101 -0.261 0.059 -0.298 0.075 -0.293 0.074
o% 0.033  0.006 0.031 0.021 0.016  0.005 0.012  0.005 0.014 0.006
d; 0.445 0.085 0203 0233 0.130 0.066 0.096 0.050 0.110 0.064
d> 0.046  0.030  0.021 0.227  0.008  0.004 0.007 0.004 0.007 0.004
ds 0.030 0.022 0.018 0232  0.006 0.005 0.005 0.003 0.006 0.003
M 0.014  0.288  0.000 0.064 0.000 0.065 0.000 0.068
A2 0.026  0.699  0.000 0267 -0.001 0249  0.000 0.257
A3 0.021 0.666  0.000 0300 -0.001 0277 -0.001 0.286

v (V1) 3.764 1.335 1.682 0956 0365 0.165
V2 0.275 0.152

EAIC -45.32 -42.49 -91.03 -76.20 -73.51

EBIC -45.47 -42.71 -91.27 -76.45 -73.78

For the St-t Model, all the fixed effects, i.e., the intercept parameter (y;), the linear response coefficient

(y2), the quadratic response coefficient (y3), and the variance component (d,, d,, d3) are significant.

Comparing the Linear Plateau, Spillman-Mitscherlich and Quadratic models

Comparing the Linear Plateau (LP), Spillman-Mitscherlich (SM) and Quadratic (Q) models under five
distributional assumptions, we find that the N-N Spillman-Mitscherlich model has the smallest EAIC and
EBIC values among the competing models indicating that this is the best fit model for the soybean yield data

(table 4).
TABLE 4. Comparison of LP, SM and Q models

Distribution LP SM Q

EAIC EBIC EAIC EBIC EAIC EBIC
SN -85.78 -86.00 -128.10 -128.33 -42.49 -42.71
St -98.03 -98.28 -144.88 -145.13 -91.03 -91.27
SSL -89.47 -89.71 -130.58 -130.83 -76.20 -76.45
SCN -88.35 -88.61 -127.70 -127.96 -73.51 -73.78
N -93.56 -93.71 -147.72 -147.88 -45.32 -45.47
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CONCLUSION

We investigated the performance of linear and nonlinear mixed response models with Skew normal

independent (SNI) distributions of random effects. We applied the Bayesian estimation framework to datasets

of

multi-location trials of potassium fertilization of soybeans. We compared the Linear Plateau, Spillman-

Mitscherlich, and Quadratic random parameter models with different distributions of the random parameter
component, i.e. the Skew-normal, Skew-z, Skew-slash, and Skew-contaminated normal distributions and also
the normal distribution with the errors following their symmetric normal independent distributions.

The overall results showed that for Linear Plateau and Quadratic models of fertilizer dosing, the Skew-¢

distributions outperform the normal ones. However, for Spillman-Mitscherlich model the normal distribution
is better than the Skew-¢ distribution. The best model for soybean yield prediction is the Normal Spillman-
Mitscherlich Response Model.
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