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Abstract. The mixed effects model has been used for modelling the fertilizer response to predict the optimum doses. 
However, a major restriction of this type of models is the normality assumption of the random parameter component. 
The purpose of this paper is to investigate the performance of random parameter models of fertilizer dosing with 
independent skew-normally distributed random parameter components. We compare the Linear Plateau, Spillman-
Mitscherlich, and Quadratic random parameter models with different random effects distribution assumption, i.e. the 
normal, Skew-normal, Skew-t, Skew-slash, and Skew-contaminated distributions and the random errors following 
symmetric normal independent distributions. The method is applied to datasets of multi-location trials of potassium 
fertilization of soybeans. The results show respectively that the Skew-t Model is the best Linear Plateau Response 
Model, the Normal Model for Spillman-Mitscherlich Response Model, and the Skew-t Model for the Quadratic 
Response Model. However, overall the normal Spillman-Mitscherlich Response Model is the best model for soybean 
yield prediction. 

Keywords: Bayesian estimation, Dose-response model, Random parameter model, Skew-normal independent 
distributions. 

INTRODUCTION  

Many linear and nonlinear functions have been used for describing multi-environment crop response to 
fertilizer, such as linear plateau and quadratic functions. The model parameters usually estimated using least 
squares method assuming that the model has a fixed effect and the random error terms were independent and 
normally distributed with a constant variances ([1]-[2]). However, this approach is unrealistic because it 
ignores the variability that probably exist between site-years. 

An alternative model is the mixed effects approach ([3]-[6]). This approach allows the parameters to have 
a random effect component that represent between sites or years variability. The random parameter models 
have been found to outperform the fixed parameter models to model dose-response relationships ([5], [7]-
[8]). Furthermore, the quadratic functional form commonly used is not always the best model. [7] and [9] 
showed that the stochastic linear plateau model and the Mitscherlich exponential type functions outperform 
the quadratic form. In a similar way, [8] showed that the stochastic linear plateau function is more adequate 
than the stochastic quadratic plateau function for corn response to Nitrogen fertilizer.  

The random parameter components and the errors are usually taken as normally distributed random 
variables ([5]-[8]). However, the normality and symmetry assumptions may be too restrictive because in 
practice departures from normality is common. Particularly, [10] and [11] concluded that the field crop yield 
distributions are in general non-normal or non-lognormal. The degree of skewness and kurtosis vary by crop 
and by the amount of nutrients uptake. In addition, (random) weather effects could result in positively or 
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negatively skewed probability functions. Therefore, [12] suggested the beta distribution for the random 
parameter component of the linear plateau function of wheat response to Nitrogen fertilizer. 

Lachos et al. [13] advocated the use of the Skew-normal independent distribution for robust modeling of 
linear mixed models. The Skew-normal independent distribution is a class of asymmetric, heavy-tailed 
distributions that includes the Skew-normal distribution, Skew-t, Skew-slash and the Skew-contaminated 
normal distributions. The class of Skew-normal distributions accommodate observations with high skewness 
and heavy tails as well as the normal distribution. 

Traditionally, fertilizer-dose response models are estimated by means of maximum likelihood estimation 
(ML) ([5]-[8]). However, for nonlinear models and small sample sizes ML is frequently biased ([14]). In 
addition, convergence can be a problem even with careful scaling and good starting values. Bayesian 
estimation is an alternative to ML. The advantages of Bayesian estimation are that the results are valid in 
small samples and that convergence in the case of nonlinear models is not an issue ([12], [14]-[15]). 

The purpose of this paper is Bayesian estimation of random parameter dose (fertilization)-response (yield) 
models for yield data that is Skew heavy-tailed distributed. 

The Normal Mixed Effects Model 

In general, a Normal mixed effects model reads: 

 

     (1) 

 

with 

 

 

where the subscript  is the subject index,  is a vector of  

observed continuous responses for subject   with  the 
nonlinear or linear function of random parameters  and covariate vector   and  are known design 
matrices of dimensions  and , respectively,  is the  vector of fixed effects,  is the 

 vector of random effects, and  is the vector of random errors, and  denotes the identity matrix. 
The matrices  with unknown parameter  is the  unstructured dispersion matrix of   the 
unknown variance of the error term. When  is a nonlinear parameter function, we have the Normal 
NonLinear Mixed Model (N-NLMM); if  is a linear parameter function, we have the N-Linear Mixed 
Model (N-LMM).   

It follows that  

 

 and  

 

and they are uncorrelated, since  ([16]-[17]). 

 

Skew-Normal Independent (SNI) Distributions 

A skew-normal independent distribution is defined as the p-dimensional random vector  
where  is a location vector,  is a multivariate skew-normal random vector with location vector , scale 
matrix  and skewness parameter vector , i.e.  ([12]). Furthermore,  is a positive weight 
random variable with cumulative distribution function (cdf)  and probability density function (pdf) 

,  is a scalar or vector of parameters indexing the distribution of the scale factor . Given ,  
follows a multivariate skew-normal distribution with location vector , scale matrix  and skewness 
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parameter vector , i.e.,  Thus, the SNI distributions are scale mixtures of the 
skew-normal distributions denoted by  The marginal pdf of  is  

 

 

 

The skew-normal independent distribution is a group of asymmetric heavy-tailed distribution of robust 
alternative to the routinely used of normal distribution for mixed effects model ([18]-[21]). A convenient 
stochastic representation of , follows from [19]-[20]: 

 

           (2) 

 

where   denotes the identity matrix and 

  and   

When , the class of SNI distributions reduces to the class of thick-tailed normal independent (NI) 
distributions ([22]-[24]). The probability density function (pdf) is  

denoted as   

The SNI-Mixed Effects Model 

 Using the general framework (1), the following general SNI-Mixed Model (SNI-MM) is defined as: 

 

 and  

 

where the random effects are assumed to have a multivariate SNI distributions and the random errors are 
assumed to have a NI distribution. 

Prior Distributions and Joint Posterior Density 

Below, we apply a Bayesian framework based on the Markov Chain Monte Carlo (MCMC) algorithm to 
infer posterior parameter estimates. Using the representation (2), the general mixed model can be formulated 
in hierarchical for as follows:  

 
 

 
 

 
). 

 
 

 

where  is the half-  distribution,  and , with  
and  the square root of  containing  distinct elements (17], [19], [24]).  

Let , , , . Then, the complete 
likelihood function associated with , is given by  
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]. 

 

To complete Bayesian specification, we need to consider prior distributions for all the unknown 
parameters . We consider  

 ([17], [19]). For  we take  for the Skew-t (St) model, 
Gamma  for the Skew-slash (SSL) model. Furthermore,  for  and Beta  for  for the 
Skew-contaminated normal (SCN) model. 

Assuming independency of the parameter vector, the joint prior distribution of all unknown parameters is  

 

. 

 

Combining the likelihood function and the prior distribution, the joint posterior density of all unknown 
parameters is  

 

 

 

 

 

Model Comparison Criteria 

The expected Akaike information criterion (EAIC) and the expected Bayesian information criterion 
(EBIC) are a deviance-based measure appropriate for Bayesian model selection ([25]-[26]).  

Let  and  be the entire model parameters and data, respectively. Define 
, where  is marginal distribution of , then  is a measure 

of fit and can be approximated by using the MCMC output in a Monte Carlo simulation. This index is given 

by . Where  is the  iteration of MCMC chain of the model and  is the number of 

iterations. 

The expected Akaike information criterion (EAIC) and the expected Bayesian information criterion 
(EBIC) define as follows  

 

, and  

 

where  is the posterior mean of the deviance,  is the number of parameters in the model,  is the total 
number of observations. These criteria penalizing models with more complexity. Smaller value of EAIC and 
EBIC indicate a better fit ([19]).  

CASE STUDY 

Data 

The dataset is obtained from 19 multi-location trials of potassium fertilization of soybeans. The 
experiments were carried out between 2002 and 2014. The soil types are Ultisols, Inceptisols, Vertisols, and 
Oxisols with soil potassium contents varying from very low to very high. Common soybean varieties were 
used. Each experiments consisted of five levels of potassium fertilization. The doses applied were 0, 40, 80, 
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160 and 320 kg ha-1 of KCl . The plots were 6 by 5 m, or 4 by 5 m arranged in a randomized complete block 
design with three to nine replications. The response variable was soybean yield (t ha-1). The yields reported 
are averages over replications ([27]-[29]).   

Response functions 

We consider three response functions: the Linear Plateau (LP), the Spillman-Mitscherlich (SM) and the 
Quadratic functions (Q).  

The stochastic LP is defined as follows:  

 

     (3) 

   

where for location  is the soybean yield;  the potassium fertilizer dose;  the intercept parameter;  
the linear response coefficient;  the plateau yield;  ,  and  are the random effects; and  is the 

random error term. In term of (1),   ;  and 

.  

The stochastic SM reads:  

 

   (4) 

 

where  is the maximum yield attainable by potassium fertilization;  is the yield increase;  is the ratio of 
consecutive increments of the yield; all other parameters, variables and distributions as in (3). 

The stochastic Q is defined as: 

 

    (5) 

 

where  is the intercept parameter whose position (value) can be shifted up or down by the random effect 
;  is the linear response coefficient with random effect parameter ;  is the quadratic response 

coefficient whose position can be shifted up or down by the random effect ;  all other 
variables and distributions as in (3) ([7]-[9]). 

Statistical Analysis 

The datasets was used to identify the model with the best fit among the random parameter models of 
fertilizer dosing. Several statistical models with differing distribution in the random effects and random errors 
are compared. These models are: 

Model 1: Skew-normal distribution for the random effects and Normal distribution for the random errors 
(SN-N) 

Model 2: Skew-t distribution for the random effects and Student-t distribution for the random errors (St-t) 

Model 3: Skew-slash distribution for the random effects and slash distribution for the random errors (SSL-
SL) 

Model 4: Skew-contaminated normal distribution for the random effects and contaminated normal 
distribution  for the random errors (SCN-CN). 

Model 5: Normal distribution for the random effects and random errors (N-N) 

The following independent priors were considered to perform the Gibbs sampler, , 
   and  for the Skew-t model, 
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for the skew-slash model,  and for the skew-
contaminated normal model, respectively.  

For each of the models, we ran three parallel independent chains of the Gibbs sampler with size 50 000 
iterations for each parameter with thinning of 5 and an initial burn in of 25 000. We monitored chain 
convergence using trace plots, autocorrelation plots and the Brooks-Gelman-Rubin scale reduction factor  
([30]). To avoid non-convergence, we normalized the original doses (subtracted the mean and divided by the 
standard deviation) which gave: -1.06, -0.70, -0.35, 0.35, and 1.76, respectively ([31]). We fitted the models 
using the R2jags package available in R ([32]). 

RESULTS AND DISCUSSION 

Soybean yield data 

Figure 1 shows the histogram and normal Q-Q plot of soybean yield data for 19 locations, while the 
boxplot is presented in Fig. 2. The figures indicates non-normality (skew heavy-tailed) pattern. The Q-Q plot 
does not show a straight line, while the boxplot shows asymmetry and an outlier. Thus, it seems appropriate 
to fit a skewed heavy-tailed model to the data. 

 

 

FIGURE 1. Histogram and Normal Q-Q plot of soybean yield data 
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FIGURE 2. Boxplot of soybean yield data 

 

Linear Plateau Response Models  

Based on the EAIC and the EBIC in table 1, we find that among the SNI models the Skew-t (St-t) Model 
gives the best fit, followed by the Skew-slash (SSL-SL), Skew-contaminated normal (SCN-CN) and Skew-
normal (SN-N) Model. We furthermore find that the St-t Model outperform the normal distributions. Thus, 
the St-t Model is the best Linear Plateau Response Model. 

 

TABLE 1. The Linear Plateau Models 

Paramete
r 

N-N  SN-N St-t SSL-SL SCN-CN 

Mean SD Mean SD Mean SD Mean SD Mean SD 

1  

2  

µp  

2   

d1  

d2 

d3 

1  

2  

3  

1) 

2 

1.473 

39.968 

1.878 

0.139 

0.467 

13.135 

0.306 

0.114 

20.482 

0.129 

0.014 

0.095 

11.964 

0.081 

1.471 

29.193 

1.880 

0.020 

0.250 

49.074 

0.121 

0.056 

0.059 

0.175 

0.113 

19.320 

0.134 

0.004 

0.114 

237.868 

0.074 

0.467 

0.654 

1.036 

1.533 

29.417 

1.843 

0.015 

0.173 

30.677 

0.071 

-0.006 

0.005 

-0.007 

5.834 

0.143 

19.604 

0.217 

0.004 

0.089 

129.636 

0.045 

0.262 

0.338 

0.516 

3.018 

1.469 

29.657 

1.826 

0.013 

0.148 

30.903 

0.062 

-0.024 

-0.015 

-0.039 

2.846 

0.151 

19.531 

0.234 

0.004 

0.076 

121.481 

0.039 

0.265 

0.325 

0.529 

1.748 

1.509 

28.982 

1.882 

0.014 

0.160 

26.718 

0.069 

0.017 

0.003 

0.036 

0.473 

0.513 

0.159 

18.929 

0.246 

0.005 

0.093 

92.546 

0.046 

0.288 

0.367 

0.573 

0.265 

0.215 

EAIC 

EBIC 

-93.56 

-93.71 

 -85.78 

-86.00 

 -98.03 

-98.28 

 -89.47 

-89.71 

 -88.35 

-88.61 

 

Table 1 furthermore shows that for the St-t Model, all the fixed effects, i.e., the intercept parameter ( ), 
the linear response coefficient ( ), the plateau yield  and the random effects are significant. 
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Spillman-Mitscherlich Response Models 

Based on the EAIC and EBIC in table 2 we find the following rankings of the SNI models: St-t < SSL-SL 
< SN-N < SCN-CN. However, we observe that the normal distributions outperform the St-t Model, and that 
the asymmetry parameters of the St-t Model are not significant. Therefore, the N-N Model is the 
best Spillman-Mitscherlich Response Model. 

 

TABLE 2. The Spillman-Mitscherlich Models 

Parameter N-N  SN-N St-t SSL-SL SCN-CN 

Mean SD Mean SD Mean SD Mean SD Mean SD 

1  

2  

3  

2   

d1  

d2 

d3 

1  

2  

3  

1) 

2 

1.950 

0.032 

2.495 

0.104 

0.465 

0.008 

0.623 

0.111 

0.013 

0.415 

0.010 

0.087 

0.006 

0.199 

1.982 

0.073 

1.762 

0.013 

0.220 

0.005 

0.364 

0.008 

0.061 

0.006 

0.110 

0.025 

0.294 

0.003 

0.085 

0.005 

0.289 

0.101 

0.785 

0.105 

1.924 

0.059 

1.771 

0.010 

0.148 

0.004 

0.283 

-0.002 

-0.013 

-0.001 

5.413 

0.095 

0.033 

0.311 

0.003 

0.072 

0.002 

0.287 

0.071 

0.441 

0.086 

2.733 

1.949 

0.074 

1.699 

0.009 

0.133 

0.004 

0.275 

0.000 

0.003 

0.000 

3.197 

0.106 

0.036 

0.310 

0.003 

0.064 

0.002 

0.240 

0.069 

0.423 

0.067 

1.769 

1.960 

0.073 

1.740 

0.011 

0.170 

0.004 

0.315 

0.001 

0.004 

0.001 

0.317 

0.549 

0.109 

0.033 

0.313 

0.003 

0.077 

0.002 

0.269 

0.063 

0.434 

0.067 

0.235 

0.205 

EAIC 

EBIC 

-147.72 

-147.88 

 -128.10 

-128.33 

 -144.88 

-145.13 

 -130.58 

-130.83 

 -127.70 

-127.96 

 

For the N-N Model, the fixed effects, i.e., the maximum yield coefficient , the increase in yield , 
the ratio of successive increment  and the random effects  are significant. 

 

The Quadratic Response Models 

 

Comparison of the EAIC and EBIC in table 3 leads to the following rankings: St-t < SSL-SL < SCN-CN < 
SN-N. The results furthermore show that the Skew heavy-tailed distributions outperform the skew normal and 
normal distribution, and that overall the St-t Model is the best Quadratic Response Model. 
  



Proceeding of The 2nd International Conference on Applied Statistics 2016  

  ISSN : 2579-4361 

 

100 

 

TABLE 3. The Quadratic Models 

 

Parameter N-N  SN-N St-t SSL-SL SCN-CN 

Mean SD Mean SD Mean SD Mean SD Mean SD 

1  

2  

3  

2   

d1  

d2 

d3 

1  

2  

3  

1) 

2 

1.796 

0.510 

-0.386 

0.033 

0.445 

0.046 

0.030 

0.107 

0.072 

0.072 

0.006 

0.085 

0.030 

0.022 

1.794 

0.506 

-0.389 

0.031 

0.203 

0.021 

0.018 

0.014 

0.026 

0.021 

0.126 

0.101 

0.101 

0.021 

0.233 

0.227 

0.232 

0.288 

0.699 

0.666 

1.810 

0.351 

-0.261 

0.016 

0.130 

0.008 

0.006 

0.000 

0.000 

0.000 

3.764 

0.088

0.063

0.059

0.005

0.066

0.004

0.005

0.064

0.267

0.300

1.335

1.786 

0.401 

-0.298 

0.012 

0.096 

0.007 

0.005 

0.000 

-0.001 

-0.001 

1.682 

0.102 

0.080 

0.075 

0.005 

0.050 

0.004 

0.003 

0.065 

0.249 

0.277 

0.956 

1.788 

0.393 

-0.293 

0.014 

0.110 

0.007 

0.006 

0.000 

0.000 

-0.001 

0.365 

0.275 

0.101 

0.081 

0.074 

0.006 

0.064 

0.004 

0.003 

0.068 

0.257 

0.286 

0.165 

0.152 

EAIC 

EBIC 

-45.32 

-45.47 

-42.49 

-42.71 

 -91.03 

-91.27 

 -76.20 

-76.45 

 -73.51 

-73.78 

 

 

For the St-t Model, all the fixed effects, i.e., the intercept parameter , the linear response coefficient 
, the quadratic response coefficient , and the variance component  are significant. 

 

Comparing the Linear Plateau, Spillman-Mitscherlich and Quadratic models 

Comparing the Linear Plateau (LP), Spillman-Mitscherlich (SM) and Quadratic (Q) models under five 
distributional assumptions, we find that the N-N Spillman-Mitscherlich model has the smallest EAIC and 
EBIC values among the competing models indicating that this is the best fit model for the soybean yield data 
(table 4). 

  

TABLE 4. Comparison of LP, SM and Q models 

Distribution LP SM Q 

EAIC EBIC EAIC EBIC EAIC EBIC 

SN -85.78 -86.00 -128.10 -128.33 -42.49 -42.71 

St -98.03 -98.28 -144.88 -145.13 -91.03 -91.27 

SSL -89.47 -89.71 -130.58 -130.83 -76.20 -76.45 

SCN -88.35 -88.61 -127.70 -127.96 -73.51 -73.78 

N -93.56 -93.71 -147.72 -147.88 -45.32 -45.47 
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CONCLUSION 

We investigated the performance of linear and nonlinear mixed response models with Skew normal 
independent (SNI) distributions of random effects. We applied the Bayesian estimation framework to datasets 
of multi-location trials of potassium fertilization of soybeans. We compared the Linear Plateau, Spillman-
Mitscherlich, and Quadratic random parameter models with different distributions of the random parameter 
component, i.e. the Skew-normal, Skew-t, Skew-slash, and Skew-contaminated normal distributions and also 
the normal distribution with the errors following their symmetric normal independent distributions.  

The overall results showed that for Linear Plateau and Quadratic models of fertilizer dosing, the Skew-t 
distributions outperform the normal ones. However, for Spillman-Mitscherlich model the normal distribution 
is better than the Skew-t distribution. The best model for soybean yield prediction is the Normal Spillman-
Mitscherlich Response Model. 
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