Comparison of Short-Term Load Forecasting Based on Kalimantan Data

Authors

  • Syalam Ali Wira Dinata Department of Mathematics, Institut Teknologi Kalimantan, Balikpapan, Indonesia
  • Muhammad Azka Department of Mathematics, Institut Teknologi Kalimantan, Balikpapan, Indonesia
  • Primadina Hasanah Department of Mathematics, Institut Teknologi Kalimantan, Indonesia
  • Suhartono Department of Statistics, Institut Teknologi Sepuluh November, Indonesia
  • Moh Danil Hendry Gamal Department of Mathematics, University of Riau, Pekanbaru, Indonesia

DOI:

https://doi.org/10.29244/ijsa.v5i2p243-259

Keywords:

forecasting, time series, triple SARIMA

Abstract

This paper investigates a case study on short term forecasting for East  Kalimantan, with emphasis on special days, such as public holidays. A time series of load demand electricity  recorded at hourly intervals contains more than one seasonal pattern.  There is a great attraction in using a modelling time series method that is able to capture triple seasonalities.  The Triple SARIMA model has been adapted for this purpose and competitive for modelling load.  Using the least squares method to estimate the coefficients in a triple SARIMA model, followed by model building, model assumptions  and comparing model criteria, we propose and demonstration  the triple Seasonal Autoregressive Integrated Moving Average model  with AIC 290631.9 and SBC 290674.2 as the best model for this study. The Triple seasonal ARIMA is one of the alternative strategy to propose accurate forecasts of  electricity load Kalimantan data for planning, operation  maintenance and  market related activities.

Downloads

Download data is not yet available.

References

Arora, S., & Taylor, J. W. (2013). Short-term forecasting of anomalous load using rule-based triple seasonal methods. IEEE Transactions on Power Systems, 28(3): 3235–3242.

Dordonnat, V., Koopman, S. J., Ooms, M., Dessertaine, A., & Collet, J. (2008). An hourly periodic state space model for modelling French national electricity load. International Journal of Forecasting, 24(4): 566–587.

Fidalgo, J., & Lopes, J. P. (2005). Load forecasting performance enhancement when facing anomalous events. IEEE Transactions on Power Systems, 20(1): 408–415.

Hyde, O., & Hodnett, P. (1993). Rule-based procedures in short-term electricity load forecasting. IMA Journal of Management Mathematics, 5(1): 131–141.

Hyde, O., & Hodnett, P. (1997). An adaptable automated procedure for short-term electricity load forecasting. IEEE Transactions on Power Systems, 12(1): 84–94.

Kim, K.-H., Youn, H.-S., & Kang, Y.-C. (2000). Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method. IEEE Transactions on Power Systems, 15(2): 559–565.

Lamedica, R., Prudenzi, A., Sforna, M., Caciotta, M., & Cencellli, V. O. (1996). A neural network based technique for short-term forecasting of anomalous load periods. IEEE Transactions on Power Systems, 11(4): 1749–1756.

Rahman, S., & Bhatnagar, R. (1988). An expert system based algorithm for short term load forecast. IEEE Transactions on Power Systems, 3(2): 392–399.

Soares, L. J., & Medeiros, M. C. (2008). Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data. International Journal of Forecasting, 24(4): 630–644.

Song, K.-B., Baek, Y.-S., Hong, D. H., & Jang, G. (2005). Short-term load forecasting for the holidays using fuzzy linear regression method. IEEE Transactions on Power Systems, 20(1): 96–101.

Srinivasan, D., Chang, C., & Liew, A. (1995). Demand forecasting using fuzzy neural computation, with special emphasis on weekend and public holiday forecasting. IEEE Transactions on Power Systems, 10(4): 1897–1903.

Downloads

Published

2021-06-30

How to Cite

Dinata, S. A. W., Azka, M. ., Hasanah, P., Suhartono, S., & Gamal, M. D. H. (2021). Comparison of Short-Term Load Forecasting Based on Kalimantan Data. Indonesian Journal of Statistics and Its Applications, 5(2), 243–259. https://doi.org/10.29244/ijsa.v5i2p243-259

Issue

Section

Articles

Most read articles by the same author(s)