• Muhammad Rizqi Fachrian Nur Politeknik Statistika STIS, Indonesia
  • Siskarossa Ika Oktora Politeknik Statistika STIS
Keywords: elderly worker, binary logistic regression, ROC curve


Binary logistic regression is used for probability modeling or to predict binary response variables (Success / Failure) from one or more explanatory variables that are continuous or categorical. In carrying out this analysis, there are several ways to test the suitability of the resulting model, and one of them is the area under the ROC curve. The application of the analysis method in this study is the determinant of the elderly population to work. The population of the elderly in Indonesia is increasing every year. Many views that the elderly depend on other residents, especially in terms of the economy. However, if seen from the percentage of elderly working in Indonesia, it is increasing, including the elderly in KTI. The purpose of this study is to determine the characteristics of the elderly in KTI, know the factors that influence the decision of the elderly population to work in KTI and find out the tendency of variables that affect the decision of the elderly to work in KTI. The data used are raw data from Badan Pusat Statistik (BPS) was Survei Sosial Ekonomi Nasional (Susenas) Kor March 2018. This study using descriptive analysis methods and binary logistic regression. The results are that the variables that significantly influence the decisions of the elderly to work are residence, gender, age, education, family status, marital status, health complaints, and health insurance. Elderly who has characteristics residing in rural, male sex, classified as young elderly (60-69 years old), has the highest level of elementary school education, has the status of KRT in his family, is married, has no complaints health, and not having health insurance will have a greater tendency to decide to work.



Affandi, M. (2009). Faktor-faktor yang memengaruhi penduduk lanjut usia memilih untuk bekerja. Journal of Indonesian Applied Economics, 3: 99–110.

Agresti, A. (2000). Categorical data analysis (2nd ed). New York (US): John Wiley & Sons.

Azen, R., & Walker, C. M. (2011). Categorical data analysis for the behavioral and social sciences.

[BPS] Badan Pusat Statistik. (2015). Statistik penduduk lanjut usia 2014. Jakarta (ID): Badan Pusat Statistik.

[BPS] Badan Pusat Statistik. (2016). Statistik penduduk lanjut usia 2015. Jakarta (ID): Badan Pusat Statistik.

[BPS] Badan Pusat Statistik. (2017). Statistik penduduk lanjut usia 2016. Jakarta (ID): Badan Pusat Statistik.

[BPS] Badan Pusat Statistik. (2018a). Statistik penduduk lanjut usia 2017. Jakarta (ID): Badan Pusat Statistik.

[BPS] Badan Pusat Statistik. (2018b). Statistik penduduk lanjut usia 2018. Jakarta (ID): Badan Pusat Statistik.

Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression. New York (US): John Wiley & Sons.

Kleinbaum, D. G., & Klein, M. (2010). Logistic regression: A self learning text (3rd ed). New York (US): Springer-Verlag.

Ling, D. C., & Chi, I. (2008). Determinants of work among older adults in urban China. Australasian Journal on Ageing, 27(3): 126–133.

Pang, L., De Brauw, A., & Rozelle, S. (2004). Working until you drop: The elderly of rural China. The China Journal, (52): 73–94.

[Pemerintah RI]. (1998). Undang-Undang Republik Indonesia Nomor 13 Tahun 1998 Tentang Kesejahteraan Lanjut Usia.

Phillipson, C., & Smith, A. (2005). Extending working life: A review of the research literature (Vol. 299). CDS.

Reddy, A. B. (2016). Labour force participation of elderly in India: patterns and determinants. International Journal of Social Economics, 43(5): 502–516.

Rosyada, A., & Trihandini, I. (2013). Determinan komplikasi kronik diabetes melitus pada lanjut usia. Kesmas: National Public Health Journal, 7(9): 395–402.

Sumarsono, F. S. (2015). Analisis partisipasi kerja penduduk lanjut usia di indonesia. Jurnal Ilmiah Mahasiswa FEB, 4(1): 1–19.

[WHO] World Health Organization. (2002). Proposed working definition of an older person in Africa for the MDS Project. World Health Organization.

Zou, K. H., O’Malley, J., & Mauri, L. (2015). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 115(5): 654–657.