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Abstract 

 The fluctuations of curly red chili prices affect the inflation rate in Indonesia. So, the 

basic characteristics of price movement and correct prediction for curly red chili prices 

become concerns in various studies. Empirical Mode Decomposition (EMD) method 

helps to examine behavioral characteristics of curly red chili prices in Indonesia easily. 

Ensemble EMD (EEMD) and modified EEMD are the decomposition method of time 

series which is the development of the EMD method. The decomposed data with EMD 

methods can also be used for price forecasts. The forecasting with ARIMA and trend 

polynomial performed to assess the effect of decomposition with EMD methods for 

forecast stability of curly red chili price in Indonesia under various conditions. The results 

show that the ability of a decomposition method to produce the actual components that 

describe the pattern of data signals affect the accuracy of the predicted value obtained 

using the model. The predicted value using the decomposed data by modified EEMD 

always better than EEMD on the overall condition.  
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1. Introduction 

Chili’s utilization as a food ingredient, for health, and as industrial raw materials make 

chili become one of the horticultural crops that is always needed by Indonesian people. 

The demand for chili affects the fluctuation of chili’s price. Curly red chili is a commodity 
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with the highest level fluctuation than other types. The fluctuations affect the inflation 

rate in Indonesia so that the basic characteristics of price movement and correct 

prediction for curly red chili prices become concerns in various studies.  

The price patterns are quite complex because the fluctuations are usually irregular 

and difficult to estimate. Consequently, the analysis became complicated, especially 

for a long time series data pattern. In statistics, the pattern analysis for the price 

behavior of chili can be done with data decomposition (Subagyo, 2000). The 

decomposition of the time series data is to separate the elements that influence the 

activities of data. In other words, the time series is broken down into several 

components then each component is identified separately to help understand the 

behavior of the data series (Makridakis et al., 1999). 

Huang et al. (1998) offer Empirical Mode Decomposition (EMD) for extracting the 

various component in a set of time-series data. EMD can parse a data signal into 

mutually orthogonal components called Intrinsic Mode Functions (IMFs). Wu & Huang 

(2009) suggested the ensemble approach to address the issue of mixing modes arising 

from the use of EMD. Ensemble EMD (EEMD) is done by add noise to the original data 

and repetition before obtaining final IMFs. The averaging process to obtain a final IMFs 

on EEMD cause no longer mutually orthogonal of final IMFs. Kuo et al. (2013) 

proposed the concept of re-analysis clump for recombining the IMFs from EEMD. 

Then, Wijayanto et al. (2015) take modification to the approach taken by Kuo to obtain 

components that reflect the actual pattern and independent of each other. Fransiska 

et al. (2014) had made a good prediction of data decomposition with the EEMD method 

using ARIMA. In this study, we want to compare the results of predictions against the 

decomposition data using EEMD and modified EEMD methods. 

2. Material and Methods 

2.1 Forecasting Methods 

a. Ensemble Empirical Mode Decomposition  

Ensemble Empirical Mode Decomposition (EEMD) is the development of the Empirical 

mode decomposition method conducted by Wu & Huang (2009)  to deal with the 

symptoms of mixing mode, which is a condition where an IMF resulting from 

decomposition contains patterns with large scale differences. The final decomposition 

component in the EEMD process is obtained by calculating the average of the 

ensemble performed. 

The number of ensemble members can be determined as many as 100 trials  

(Zhang et al., 2010) with a standard deviation of the white noise between 0.1 or 0.2 

(Zhang et al., 2008). 

b. Modified EEMD 

Wijayanto et al. (2015) modified the approach taken by Kuo et al. (2013) to obtain 

components that are independent and reflect true patterns. Modifications were made 

in the process of grouping IMFs produced at an iterative stage in the EEMD. The 

measure of distance used in the clustering is the correlation between averages. 
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c. Autoregressive Integrated Moving Average  

Forecasting methods are generally used for two purposes, namely to analyze the data 

series and the selection of forecasting models that best match the data series. The 

Integrated Moving Average Autoregressive (ARIMA) is a forecasting method 

introduced by Box-Jenkins in 1970. ARIMA can predict time series data based only on 

the behavior of observed variable data, so this method is most popular for forecasting 

univariate time series data. Box-Jenkins method models consist of non-seasonal 

stationary models: AR(p), MA(q) and ARMA(p,q),  non-stationary and non-seasonal 

models: ARI(p,d), IMA(d, p) dan ARIMA(p, d, q) and seasonal model SARIMA(p, d, q) 

(P, D, Q)S. ARIMA (p, d, q) model is 

 

ϕ𝑝(𝐵)(1 − 𝐵)𝑑𝑥(𝑡) = θ𝑞(𝐵)𝑎(𝑡) 

 

where p is: autoregressive order, d is Integrated, q is moving average order,  ϕ𝑝(𝐵) = 1 −

ϕ1𝐵 − ϕ2𝐵2 − ⋯ − ϕ𝑝𝐵𝑝, θ𝑞(𝐵) = 1 − θ1𝐵 − θ1𝐵2 − ⋯ − θ𝑞𝐵𝑞, and (1 − 𝐵)𝑑 is an 

order of non-seasonal distinctions. 

d. Trend Polynomial 

The trend line is the regression line with the independent variable t is a time variable. 

A common form of regression polynomial is as follows: 

𝑦 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + ⋯ + 𝑎𝑁𝑡𝑁 

with 𝑎1, 𝑎2, … , 𝑎𝑁 are coefficients of the polynomial, and N is non-negative integers.  

2.2 Methods 

1) Split the data into training and testing with some variations (Figure 1). 

 

Figure 1: Distribution of training and testing data. 
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2) Decompose the training data become IMFs and residue using EEMD 

algorithms; 

- Add a series of white noise to original data to make new data series 𝑥(𝑡). 

- Identify all local extreme; maxima and minima of x(t). 

- Create an upper envelope emax(t) and the lower envelope emin(t), through 

all the local maxima and minima which are associated with cubic spline 

interpolation. 

- Calculate mean, 𝑚1(𝑡) =
(𝑒𝑚𝑎𝑥(𝑡)+𝑒𝑚𝑖𝑛(𝑡))

2
 

- Extract detail as IMF candidate, 𝑑1(𝑡) = 𝑥(𝑡) − 𝑚1(𝑡) 

- Analyze detail as an IMF: Function has the same number of zero-crossings 

and extreme or different only one, symmetrical function to local zero mean. 

- If the detail is not an IMF then repeat steps (2)-(6), with 𝑑1(𝑡) as x(t) in the 

next iteration, 𝑑1(𝑡) − 𝑚11(𝑡) = 𝑑11(𝑡). Repeat this step until the IMF’s criteria 

are fulfilled. If after k iterations a detail is an IMF, 𝑑1(𝑘−1)(𝑡) − 𝑚1𝑘(𝑡) =

𝑑1𝑘(𝑡), then the first IMF obtained by the formula 𝑐1(𝑡) = 𝑑1𝑘(𝑡). 

- Extract the residue, 𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡). 

- Check the residue as a monotonous function (do not have an extreme value). 

Steps (2)-(8) repeated i iterations if the residue is not a monotonous function. 

If the residue is a monotonous function then the sifting process is stopped, 

and 𝑟(𝑡) = 𝑟𝑖−1(𝑡) − 𝑐𝑖(𝑡), 𝑟0(𝑡) = 𝑥(𝑡) with 1 < i < M. 

- Steps (1)-(9) repeated j times with different white noise in each iteration. 

- Calculate the mean of corresponding IMFs, 𝑐𝑖(𝑡) =
1

𝑁
∑ 𝑐𝑖𝑗(𝑡)𝑁

𝑗=1 , and residue 

𝑟 =
1

𝑁
∑ 𝑟𝑗

𝑁
𝑗=1  as the final result, j is the number of iterations (1, 2, ..., N), and i 

is an index of the IMF. 

 

3) Decompose the training data become IMFs and residue using modified EEMD 

algorithms; 

- Decompose the data using the EEMD algorithm. 

- Grouping the iterations that produce the same amount of IMFs into one 

group. 

- Obtain final IMFs for each group p,  p = (1, 2, ..., P):  

 IMFi(p) is the mean of  IMFs with same index i of all member 𝑛𝑝 of group 

p, 𝐼𝑀𝐹𝑖(𝑝) =
1

𝑛𝑝
∑ 𝐼𝑀𝐹𝑖𝑗(𝑝)

𝑛𝑝

𝑗=1
 , 𝑖 = 1, 2, … , 𝑚𝑝 . 

 Do hierarchical cluster analysis to IMFs, the distance of IMF𝑖(𝑝) and 

IMFℎ(𝑝) is 1 − 𝑎𝑏𝑠 (𝑐𝑜𝑟𝑟(𝐼𝑀𝐹𝑖(𝑝), 𝐼𝑀𝐹ℎ(𝑝))). Two IMFs with distance less 

than 0,8 are combined into a single IMF. 

- Combine IMFs between groups with a pair-matching process. Each pair 

consists of the IMF of a group and the IMF another group. Do it sequentially, 

starting with Group 1 and Group 2 at the first. The results from this group then 

combined with Group 3, and so on (Wijayanto et al., 2015). 
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4) Obtain IMFs results to the training data using EEMD and modified EEMD algorithm. 

5) Determine the best model by ARIMA for all IMFs components; Obtain a polynomial 

trend model that is appropriate to the overall residue. 

6) Predicting with best ARIMA model for the IMFs, and polynomial trend towards the 

residue. The predicted value for decomposition is the sum of all IMFs and residue. 

7) Calculate Mean Absolute Percentage Error (MAPE) predicted value of training and 

testing data to see the goodness of the model used in predicting, 𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑥(𝑡)−�̂�(𝑡)

𝑥(𝑡)
| × 100%𝑛

𝑡=1  (Bakri et al., 2019). 

8) Perform (2-7) steps for all variation of the data distribution to see the effect of the 

decomposition method used for forecasting stability. 

 

3. Result and Discussion 

The data is divided into training data to obtain models and testing data to evaluate the 

goodness of the model. The goodness of forecasting heavily depends on testing data 

series used to evaluate the goodness of the models. The very volatile of weekly curly 

red chili price data can lead the data pattern used as testing the data do not describe 

the data pattern used as training data. It can lead the model does not provide good 

results in forecasting the testing data although the data is derived from the same series. 

By this issue, to see the stability of data forecasting for decomposed data, a vary 

partition of training and testing data performed as follows 95:05, 90:10, 85:15, 80:20, 

90:5, 85:10, 80:15, 85:5 and 80:10.  

Overall the best model in Table 1 is then used to predict each component of 

decomposition. The prediction results of each IMFs and residue then totaled to obtain 

the prediction value of the weekly curly red chili price. Then, MAPE calculated as 

shown in Table 2. 

The lower value of MAPE indicates the prediction value getting closer to the actual 

value. Table 2 shows that the value of MAPE on data decomposition using EEMD 

modified first is always smaller, it means the decomposition using modified EEMD 

produced the ARIMA and polynomial regression prediction value that always stable 

closer to the actual value than EEMD in all variations condition of the data. 

The decomposition performed to improve the accuracy of forecasting and 

understanding the behavior of the data series (Makridakis et al., 1999). The ability of 

modified EEMD to extract the data into IMFs depicting actual patterns of a signal 

(Wijayanto et al., 2015), make the forecasting of decomposed weekly curly red chili 

price getting better. It also can be seen from the graph the prediction value of each 

decomposed data for each partition in Figure 2. Based on Figure 2 it can be said that 

the pattern of prediction value obtained from the decomposed data follows the pattern 

of the actual data. The prediction value of the decomposed data using modified EEMD 

is closer to the actual values and have a pattern more closely resembling the pattern 

of the actual data than using EEMD. 
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Table 1: The best model of each component decomposition. 

Number of 

Training data 

decomposition 

method 
Component Model 

95% EEMD 

 

 

 

 

 

 

IMF1 

IMF2 

IMF3 

IMF4 

IMF5 

IMF6 

residue 

ARIMA (2,0,2) 

ARIMA (3,0,2) 

ARIMA (3,0,0) 

ARIMA (3,0,0) 

ARIMA (3,1,0) 

ARIMA (3,2,0) 

y = 7.e-6t4 - 0.004t3-0.44t2+37.48t+15772 

 Modified EEMD IMF1 

IMF2 

IMF3 

residue 

ARIMA (2,0,1) 

ARIMA (4,0,0) 

ARIMA (3,2,0) 

y = 6.e-6t4 - 0.003t3+0.38t2+35.93t+16050 

90% 

 

 

EEMD 

 

 

 

 

 

 

IMF1 

IMF2 

IMF3 

IMF4 

IMF5 

IMF6 

residue 

ARIMA (1,0,1) 

ARIMA (5,0,0) 

ARIMA (3,0,0) 

ARIMA (3,0,0) 

ARIMA (3,1,0) 

ARIMA (2,1,0) 

y = -0.13t2+71.04t+15441 

 Modified EEMD IMF1 

IMF2 

IMF3 

residue 

ARIMA (1,0,3) 

ARIMA (4,0,0) 

ARIMA (3,0,0) 

y = -0.13t2+71.43t+15408 

85% 

 

EEMD 

 

 

 

 

 

 

IMF1 

IMF2 

IMF3 

IMF4 

IMF5 

IMF6 

residue 

ARIMA (1,0,3) 

ARIMA (5,0,0) 

ARIMA (3,0,0) 

ARIMA (3,0,0) 

ARIMA (3,0,0) 

ARIMA (2,2,0) 

y = -0.07t2+58.14t+15880 

 Modified EEMD IMF1 

IMF2 

IMF3 

residue 

ARIMA (1,0,3) 

ARIMA (4,0,0) 

ARIMA (3,0,0) 

y = -0.06t2+55.19t+16056 

80% EEMD 

 

 

 

 

 

 

IMF1 

IMF2 

IMF3 

IMF4 

IMF5 

IMF6 

residue 

ARIMA (3,0,4) 

ARIMA (5,0,0) 

ARIMA (3,0,0) 

ARIMA (3,0,0) 

ARIMA (4,2,0) 

ARIMA (2,2,0) 

y = -0.06t2+54.05t+16041 

 Modified EEMD 

 

IMF1 

IMF2 

IMF3 

IMF4 

residue 

ARIMA (3,0,4) 

ARIMA (4,0,0) 

ARIMA (3,0,0) 

ARIMA (3,1,0) 

y = 4e-6t4-0.003t3+0.54t2+5.73t+17121 
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Table 2: MAPE for testing prediction value for all data partition. 

Scope of Data 100% 95% 90% 

Training: Testing 95%:5% 90%:10% 85%:15% 80%:10% 90%:5% 85%:10% 80%:15% 85%:5% 80%:10% 

EEMD 170.7 33.4 31.8 39.1 41.9 37 41.3 41.9 43.9 

Modified EEMD 111.4 26.3 31.2 37.2 36.7 36.2 37.2 40.6 38.9 

 

 

 

Figure 2: Graph of prediction value using the best models of the various conditions of 
the data. actual data, EEMD, modified EEMD. 

4. Conclusion 

The decomposition helps to understand the behavior of the weekly curly red chili price 

in Indonesia easily. In this case, the ability of a decomposition method to produce the 

actual components that describe the pattern of data signals affect the accuracy of the 

predicted value obtained using the model. The accuracy of the model in predicting 

testing data from decomposed data with modified EEMD always better than EEMD on 

the overall condition. Data decomposition using the modified EEMD method provides 

nearly approximates prediction value and a more closely resembling pattern of the 

actual testing data than using EEMD. 
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