POISSON REGRESSION OF DAMAGE PRODUCT SALES USING MCMC ${ }^{*}$

Reny Rian Marliana ${ }^{1 \ddagger}$, Septiadi Padmadisastra ${ }^{2}$
${ }^{1}$ Department of Informatics, Sumedang School of IT, Indonesia, renyrianmarliana@gmail.com
${ }^{2}$ Department of Statistics, Padjadjaran University, Indonesia, s_padmadisastra@yahoo.com ${ }^{\ddagger}$ corresponding author
Indonesian Journal of Statistics and Its Applications (eISSN:2599-0802)
Vol 2 No 1 (2018), 1-12

Copyright © 2018 Reny Rian Marliana and Septiadi Padmadisastra. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper a model for the number of "damage" product sales is studied. The product sales are run into underreporting counts, caused by a delay on input process of the system called sales cycle. The goal of the study is to estimate the parameters of the regression model of product sales on an explanatory variable. It is the actual number of product sales. The model used is a mixture of the Poisson and the Binomial distributions. The parameters of the regression model are estimated by a Bayesian approach and Markov Chain Monte Carlo simulation using Gibbs sampling algorithm. The results of estimation clearly showed a gap between undamage product sales and the actual number. The gap is the number of damaged product sales.

Keywords: bayesian, gibbs sampling, memc, underreported

1. Introduction

Misreporting counts can occur in any system of reporting. Li et al. (2003), in his regression model, misreporting occurs when an individual report on the number of observed events is different from the actual values (as cited in Pararai, 2010). Thus, misreporting counts divided into two, underreporting and over reporting counts. Underreporting is a problem in data collection, when the counting of observed events, for some reason incomplete (Neubauer et al., 2011). Underreported counts occur when the number of observed events, reported smaller than the actual number of

[^0]occurrences. Instead, over reported counts occur when the number of observed events, reported more than of the actual number of occurrences.

In this research, underreported counts occurred as a result of delay on input process of the number of product sales repeatedly. In this system (see Figure 1), the input process of the number of product sales will directly reduce the stock number of the products in the counter. That would indirectly lead to over reporting the stock number the products in the counter. This is a major factor that caused errors on the next production's plan or in the distribution of products. In order to reduce the risks, the actual number of product sales is need to be estimated.

The consequence of the underreporting counts is the number of product sales reported is only part of the actual number of product sales. There are a number of product sales which are unreported. It means that a product sold at a counter will have two possible treatments from the administrator i.e. inputted into the system or not. An opportunity for a product sold at a counter inputted to the system called probability of reported. This probability has a value ranging from 0-1. It is also known that the actual number of product sales in a counter within a month was random and ranged between $0-21$ pieces with an average of 4 pieces per month. Both of the information can be considered as a prior information that can be used in the estimation of the actual number of product sales.

The actual number of product sales is influenced by the activity of selling the product itself. As cited in Sinaga (2013), one of the factors that affects sales activities is market conditions (Basu, 2005). The market conditions can be seen as a rate of product sales at its counter. Thus, to estimate the actual number of product sales, need an analysis that can describe the relationship between the number of products sales (underreported) with rate of product sales involving both the prior information before.

So far modeling of the count data using Poisson regression model and binomial regression models. However, both models can be used if the count data is considered accurately reported. As cited in Papadatos (2005), models for under-reported counts were first introduced in Moran's characterization (1952) and Rao-Rubin condition (1964). Then, several researchers have developed a model for underreported counts, including the Poisson regression model for underreported counts developed by Winkelmann (1996), Mukhopadhyay (1997) developed the negative binomial regression model for underreported counts (as cited in Pararai, 2010) and the generalized Poisson-Poisson mixture models which can be used for misreporting counts (under, over and accurately reported) developed by Pararai (2010).

In estimating the model parameters, Pararai (2010) used classical statistical approach which only use sample data information through the maximum likelihood method. Meanwhile, Winkelmann (1996) used a Bayesian statistical approach in estimating the model parameters.

Figure 1: Reporting System of A Garment Company

2. Poisson Model for Underreported Counts

Moran (1952) introduced a characterization of underreported counts (as cited in Papadatos, 2005). It is stated that if N_{1} and N_{2} are non-degenerate independent random variables and its values are non-negative and if the conditional distribution of $N_{1}\left(N_{1}+N_{2}=n\right)$ is binomial and its parameter is $n \in N=\{0,1, \cdots\}$ with success probability $p \in[0,1]$ for some $n \in N, P\left[N_{1}+N_{2}=n\right]>0$ then the distributions of N_{1}, N_{2} and $\left(N_{1}+N_{2}=n\right)$ are Poisson. For some $i \in N, P\left[N_{1}=i\right]>0$ and $P\left[N_{2}=i\right]>0$.

Another form of Moran's (1952) characterization was introduced by Rao and Rubin (1964), independence of N_{1} and N_{2} called as Rao-Rubin condition. For some $p \in[0,1]$, then Rao-Rubin condition implies that N_{1} and N_{2} follow a Poisson distribution with parameter λp and $\lambda(1-p)$ for some $\lambda>0$.

3. Poisson Regression Model for Underreported Counts

Poisson regression model for underreported counts which is developed by Winkelmann (1996) was also a mixture of binomial distribution and Poisson distribution.

Let Y_{i}^{*} as an actual number of observed events in a specific time for individual i. Assume that Y_{i}^{*} depends on \mathbf{x}_{i} and follows a Poisson distribution with parameter $\lambda_{i}=\exp \left[\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right]$. Let Y_{i} as the reported number of observed events in a specific time for individual i and follows a binomial distribution with parameters Y_{i}^{*} and p (probability of reported).

Underreported counts occur if $Y_{i}^{*}>Y_{i}$ so the marginal distribution of Y_{i} is a Poisson regression model with parameter $\lambda_{i} p=\exp \left[\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right] \cdot p$.

Parameter p_{i} cannot be treated as a fixed parameter since the model is singular with $n+k$ parameter and n data points (Winkelmann, 1996). To solve this problem, Winkelmann consider the parameter p_{i} as a random variabel which follows a certain distribution. Further, Winkelmann (1996) obtained the posterior distribution of y^{*}, p and $\boldsymbol{\beta}$ as:

$$
\begin{equation*}
\underbrace{P\left(y^{*}, p, \boldsymbol{\beta} \mid y, \mathbf{x}\right)}_{\text {posterior }} \propto \underbrace{P\left(y \mid y^{*}, p\right)}_{\text {likelihood }} \times \underbrace{P\left(y^{*} \mid \boldsymbol{\beta}\right) \times f(\boldsymbol{\beta}) \times f(p)}_{\text {prior }} \tag{1}
\end{equation*}
$$

Drapper \& Guttman (1971) assume that the parameters N and p are independent random variables, where N follows a discrete uniform distribution and p follows a beta distribution (as cited in Moreno, 1998). Meanwhile, Raftery (1988) assumes that N follows a Poisson distribution with parameter λ and p follows a uniform distribution (as cited in Moreno, 1998). Winkelmann (1996) assumes that N or Y^{*} follows a Poisson distribution with parameter $\lambda=\exp \left[\mathbf{x}^{\prime} \boldsymbol{\beta}\right]$ where the $\boldsymbol{\beta}$ assumed follows a normally distribution with parameter μ and σ, and p assumed follows a uniform distribution. The Posterior distribution of Y_{i}^{*} is (Winkelmann, 1996) :

$$
\begin{align*}
P\left(Y_{i}^{*}, \boldsymbol{\beta}, p_{i} \mid Y_{i}\right) \propto & \propto P\left(Y_{i} \mid Y_{i}^{*}, p_{i}\right) P\left(Y_{i}^{*} \mid \boldsymbol{\beta}\right) f(\boldsymbol{\beta}) f\left(p_{i}\right) \\
& \propto \exp \left[-\frac{1}{2}(\boldsymbol{\beta}-\boldsymbol{\mu})^{\prime} \Sigma^{-1}(\boldsymbol{\beta}-\boldsymbol{\mu})\right] \\
& \cdot \prod_{i=1}^{n} \exp \left[\left(y_{i}^{*} \cdot \mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)-\exp \left[\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right]\right] \frac{p_{i}^{y_{i}}\left(1-p_{i}\right)^{y_{i}^{*}-y_{i}}}{\left(y_{i}^{*}-y_{i}\right)!y_{i}!} . \tag{2}
\end{align*}
$$

with $Y_{i}^{*}=0,1,2, \cdots ; Y_{i}=0,1,2, \cdots ; 0 \leq p_{i} \leq 1 ;-\infty \leq \boldsymbol{\beta} \leq \infty ; i=1,2, \cdots, n$

4. Markov Chain Monte Carlo (MCMC)

MCMC is done by drafting markov chain that converges quickly on the posterior distribution. MCMC generate sample data of parameter θ which has a spesific distribution through an algorithm and done iteratively (the value of each step depends on the previous step). Gibbs sampling is one of the MCMC algortihm which usually used. Gibss sampling can be applied if the conditional distribution of each parameter is known.

Estimation of the paramater of the model using MCMC will depend on the determination of the burn in period, which is done in line with determination the convergence of the algorithm using trace plot, autocorrelation plot and ergodic mean plot.

Base from the posterior distribution developed by Winkelmann, it is obvious that it is difficult to determine the kind of posterior distribution. To facilitate the parameter estimation, Markov Chain Monte Carlo (MCMC) simulation with full conditional distribution is used as given in the Winkelmann (1996). The MCMC Algorithm is as follows:

1. Set the initial value of each parameters $Y^{*(0)}, p^{(0)}$ and $\boldsymbol{\beta}^{(0)}$
2. Set the number of iteration T
3. For $t=1,2, \ldots, T$ repeat the following steps :
a. Generate new candidate of $Y_{i}^{*(t)}$ from $Y_{i}^{*} \mid \boldsymbol{\beta}^{(t-1)}, p_{i}^{(t-1)}, Y_{i}$
b. Generate new candidate of $p_{i}^{(t)}$ from $p_{i} \mid Y_{i}, Y_{i}^{*(t)}$
c. Generate new candidate of $\boldsymbol{\beta}^{(t)}$ from $\boldsymbol{\beta} \mid Y_{i}^{*(t)}, Y_{i}$ using Random-Walks algorithm with $\boldsymbol{\beta}^{(t)}=\boldsymbol{\beta}^{(t-1)}+\left[\tau \mathbf{V}_{\beta}^{-1 / 2} \mathbf{z}\right]$ and $\mathbf{z} \sim N_{D}(\mathbf{0}, \mathbf{I})$
4. Update the values of each parameter using the values obtained by the simulation.
5. Check the convergence of the algorithm using Autocorrelation plot, Trace plot and Ergodic mean plot
6. Determine the burn in period.
7. From the simulated values after the burn-in until the last iteration count::
a. The average value and standard deviation of the parameter $\boldsymbol{\beta}$
b. The average value and standard deviation of the parameter p_{i} for $i=1,2, \cdots, n$
c. The average value and standard deviation of the parameter Y_{i}^{*} for $i=1,2, \cdots, n$

5. Results and Discussion

The data used in this study is product sales at 108 counters in August 2013 of a garment company in Bandung City, Indonesia. These counters belong to the group of regions that have the highest sales target compared with other counters across of Indonesia. The rate of product sales of these counters was also the highest compared with others. This causes the risk of delay on input process is very high, while the products distributions must run every week and production plans run every month (see Figure 1). This is a major factor that lead in increasing the errors on the marketing strategies (se Figure 1). In order to reduce the risks, the actual number of product sales is need to be estimated.

Count variable, reported number of product sales has values between 1-26 pieces with an average of 5.44 and standard deviation 4.57 . While the independent variable is the rate of products sales in each counter and divided into 4 categories such as very high, high, low and very low. Therefore, the regression model of the actual number of product sales involved 3 dummy variables. MCMC simulation performed with 5000 iterations and the algorithm before. To check the convergence of the series we use trace plot, autocorrelation plot and ergodic mean plot.

All the trace plot (simulation p, simulation Y^{*} and simulation $\boldsymbol{\beta}$) did not show a certain pattern. The autocorrelation plots (simulation p, simulation Y^{*} and simulation $\boldsymbol{\beta}$) showed there are not an autocorrelation between two iterations. Ergodic mean plots showed that ergodic mean of the sample values of parameter p, Y^{*} and β are stabilize after the first 3000 iterations. Then, the convergence of the simulation for parameter p and Y^{*} and regression parameter $\boldsymbol{\beta}$ has been achieved with the burn in period of 3000 first iterations.

From the simulations, the results of the regression parameter estimation can be seen in Table 1 below:

Table 1: Regression Parameters Estimate

Parameter	Estimator	Stdev.
β_{0}	1.9929	0.4709
β_{1}	1.0721	0.4792
β_{2}	0.3876	0.4779
β_{3}	0.1774	0.4843

It can be stated that the average of the actual number of product sales in August 2013 is a function of :

$$
\hat{\lambda}_{i}=E\left[Y_{i}^{*} \mid X_{i}\right]=e^{\left[1,9929+1,0721 D_{1 i}+0,3876 D_{2 i}+0,1774 D_{3 i}\right]} .
$$

Therefore, based on the category rate of products sales in each counters, the estimates of the average of the actual number of the product sales in August 2013 can be seen in Table 2.

The mean values of product sales, obtained from the above regression equation, presented in the above table. It can be seen that the average of the actual number of the product sales in August 2013 at the counter with the rate of product sales very high is 21 pieces, at the counter with the rate of product sales high is 11 pieces, at the counter with the rate of product sales low is 9 pieces and at the counter with the rate of product sales very low is 7 pieces.

Tabel 2: The Estimators of The Mean of The Actual Number of The Product Sales

The Rate Of Product	$\hat{\lambda}_{i}=E\left[Y_{i}^{*} \mid X_{i}\right]$
Sales	21
Very High	11
High	9
Low	7
Very Low	

To determine the possibility occurences of underreporting counts, we compared the estimated value of the average of the actual number of the product sales (see Table 2) with the number of product sales recorded in the report (underreported counts). The results (see Table 3) show that the product sales of 87.04% counters from 108 are run into underreporting counts. It means that the risk of error in the production's plans, product distributions or in other marketing strategies will be high.

Tabel 3: The Comparison of The Estimators of The Average of The Actual Number of The Product Sales on Product Sales Report (Underreported Counts)

| The Rate Of Product |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sales |$\hat{\lambda}_{i}>y_{i} \quad \hat{\lambda}_{i}<y_{i}, \hat{\lambda}_{i}=y_{i} \quad$ Total | Percentage of |
| :---: |
| Underreporting |

Meanwhile, the results of the estimation of the actual number of the product sales or Y^{*} and the probability for a product sold reported (inputted to the system) or p based on the category the rate of products sales in each counter are in the following Table 4, Table 5, Table 6 and Table 7.

From Table 4, we get that the average of the estimators of the actual number of the product sales at a counter with the rate of product sales very high is ranging between 17-26 pieces with a gap of 8-18 pieces compared to the number of the product sales listed in the report (obtained from the system). The mean percentage of underreporting counts of product sales is 60.03% or ranged from 10.71% to 90.75%.

Tabel 4 : The Estimators of Model Parameter at Counter with The Very High Rate of Product Sales

Counter	y_{i}	$\widehat{y_{l}^{*}}$	$\operatorname{std}\left(\widehat{y_{l}}\right)$	$\widehat{p_{l}^{*}}$	$\operatorname{std}\left(\widehat{p_{l}^{*}}\right)$	$\widehat{q_{l}^{*}} x 100 \%$	$\widehat{y_{l}^{*}} \pm$ $\operatorname{std}\left(\widehat{y_{l}}\right)$	$\widehat{y_{i}^{*}} \pm$ $\left.\operatorname{std}\left(\widehat{y_{l}}\right)\right]-y_{i}$
Counter 1	15	21	4	0.7122	0.1533	28.78%	$17-26$	$2-11$
Counter 2	1	21	5	0.0957	0.0696	90.43%	$15-26$	$14-25$
Counter 3	23	26	3	0.8648	0.1052	13.52%	$23-29$	$0-6$
Counter 4	11	21	5	0.5583	0.1638	44.17%	$16-26$	$5-15$
Counter 5	4	21	5	0.2299	0.1037	77.01%	$16-26$	$12-22$
Counter 6	1	21	5	0.0925	0.0655	90.75%	$15-26$	$14-25$
Counter 7	8	21	5	0.4234	0.1435	57.66%	$15-26$	$7-18$
Counter 8	5	21	5	0.2804	0.1196	71.96%	$16-26$	$11-21$
Counter 9	13	21	5	0.6445	0.1633	35.55%	$16-26$	$3-13$
Counter 10	4	20	5	0.2362	0.1087	76.38%	$15-26$	$11-22$
Counter 11	26	28	3	0.8929	0.0857	10.71%	$26-31$	$0-5$
Counter 12	1	20	5	0.0959	0.0681	90.41%	$15-26$	$14-25$
Counter 13	3	21	5	0.1852	0.096	81.48%	$15-26$	$12-23$
Counter 14	5	21	5	0.2839	0.1181	71.61%	$15-26$	$10-21$
Average	$\mathbf{9}$	$\mathbf{2 2}$	$\mathbf{5}$	$\mathbf{0 . 3 9 9 7}$	$\mathbf{0 . 1 1 1 7}$	$\mathbf{6 0 . 0 3 \%}$	$\mathbf{1 7 - 2 6}$	$\mathbf{8 - 1 8}$

From Table 5, we get that the average of the estimators of the actual number of the product sales at a counter with the rate of product sales high is ranging between 8-14 pieces with a gap of 3-8 pieces compared to the number of the product sales listed in the report (obtained from the system). The mean percentage of underreporting counts of product sales is 50.29% or ranged from 9.09% to 81.87%.

Tabel 5 : The Estimators of Model Parameter at Counter with The High Rate of Product Sales

Counter	y_{i}	$\widehat{y_{l}^{*}}$	$\operatorname{std}\left(\widehat{y_{l}}\right)$	$\widehat{p_{l}^{*}}$	$\operatorname{std}\left(\widehat{p_{l}^{*}}\right)$	$\widehat{q_{l}^{*}} x 100 \%$	$\widehat{y_{l}^{*}} \pm$ $\operatorname{std}\left(\hat{y}_{l}\right)$	$\left[\widehat{y_{v}^{*}} \pm\right.$ $\left.\operatorname{std}\left(\widehat{y_{l}}\right)\right]-y_{i}$
Counter 1	11	13	2	0.8147	0.1324	18.53%	$11-15$	$0-4$
Counter 2	5	10	3	0.526	0.1937	47.40%	$7-14$	$2-9$
Counter 3	18	19	1	0.9091	0.0797	9.09%	$18-20$	$0-2$
Counter 4	1	10	3	0.1813	0.1273	81.87%	$7-13$	$6-12$
Counter 5	6	10	3	0.5947	0.1885	40.53%	$7-13$	$1-7$
Counter 6	12	14	2	0.8328	0.1262	16.72%	$12-16$	$0-4$
Counter 7	2	10	3	0.2778	0.1599	72.22%	$6-13$	$4-11$
Counter 8	5	10	3	0.5255	0.193	47.45%	$7-13$	$2-8$
Counter 9	5	10	3	0.5294	0.1921	47.06%	$7-13$	$2-8$
Counter 10	1	10	3	0.1852	0.1315	81.48%	$6-13$	$5-12$
Counter 11	3	10	3	0.366	0.1801	63.40%	$7-13$	$4-10$
Counter 12	3	10	3	0.3612	0.177	63.88%	$7-13$	$4-10$
Counter 13	2	10	3	0.2773	0.162	72.27%	$6-13$	$4-11$
Counter 14	7	11	3	0.6781	0.1884	32.19%	$8-13$	$1-6$
Counter 15	6	10	3	0.6034	0.1929	39.66%	$7-13$	$1-7$
Counter 16	11	13	2	0.8143	0.1341	18.57%	$11-15$	$0-4$

Counter	y_{i}	$\widehat{y_{l}^{*}}$	$\operatorname{std}\left(\widehat{y}_{l}\right)$	$\widehat{p_{l}^{*}}$	$s t d\left(\widehat{p_{l}^{*}}\right)$	$\widehat{q_{l}^{*}} x 100 \%$	$\begin{gathered} \widehat{y_{y}^{*}} \pm \\ \operatorname{std}\left(\hat{y}_{l}\right) \\ \hline \end{gathered}$	$\begin{gathered} {\left[\widehat{y}_{i}^{*} \pm\right.} \\ \left.\operatorname{std}\left(\hat{y_{i}}\right)\right]-y_{i} \end{gathered}$
Counter 17	13	15	2	0.8484	0.1157	15.16\%	13-16	0-3
Counter 18	3	10	3	0.3776	0.1865	62.24\%	6-13	3-10
Counter 19	3	10	3	0.3544	0.1683	64.56\%	7-13	4-10
Counter 20	7	11	3	0.6443	0.1831	35.57\%	8-14	1-7
Counter 21	10	12	2	0.7844	0.1449	21.56\%	10-15	0-5
Counter 22	14	16	2	0.8652	0.1069	13.48\%	14-17	0-3
Counter 23	7	11	3	0.6487	0.1872	35.13\%	8-14	1-7
Counter 24	3	10	3	0.3707	0.1777	62.93\%	6-13	3-10
Counter 25	6	10	3	0.599	0.1941	40.10\%	7-13	1-7
Counter 26	5	10	3	0.5168	0.1856	48.32\%	7-14	2-9
Counter 27	11	13	2	0.8085	0.1387	19.15\%	11-15	0-4
Counter 28	3	10	3	0.3723	0.1823	62.77\%	6-13	3-10
Counter 29	1	10	3	0.1833	0.1307	81.67\%	7-13	6-12
Counter 30	2	10	3	0.2747	0.1628	72.53\%	7-13	5-11
Counter 31	6	11	3	0.5893	0.186	41.07\%	8-14	2-8
Counter 32	10	13	2	0.7666	0.1514	23.34\%	10-15	0-5
Counter 33	12	14	2	0.8394	0.1216	16.06\%	12-16	0-4
Counter 34	2	10	3	0.2812	0.1589	71.88\%	6-13	4-11
Counter 35	8	11	3	0.6985	0.1715	30.15\%	9-14	1-6
Counter 36	1	10	3	0.1822	0.1252	81.78\%	7-13	6-12
Counter 37	6	10	3	0.5994	0.189	40.06\%	7-13	1-7
Counter 38	4	10	3	0.4421	0.1903	55.79\%	7-13	3-9
Counter 39	1	10	3	0.185	0.1326	81.50\%	7-13	6-12
Counter 40	2	10	3	0.2744	0.1582	72.56\%	6-13	4-11
Counter 41	2	10	3	0.273	0.1582	72.70\%	6-13	4-11
Counter 42	7	11	3	0.661	0.1858	33.90\%	8-13	1-6
Counter 43	2	10	3	0.2775	0.1608	72.25\%	7-13	5-11
Counter 44	7	11	3	0.6493	0.1855	35.07\%	8-14	1-7
Counter 45	2	10	3	0.2743	0.1612	72.57\%	7-13	5-11
Counter 46	2	10	3	0.2821	0.1589	71.79\%	6-13	4-11
Counter 47	8	11	3	0.7136	0.1718	28.64\%	9-14	1-6
Counter 48	1	10	3	0.1833	0.1291	81.67\%	7-13	6-12
Counter 49	4	10	3	0.444	0.1847	55.60\%	7-13	3-9
Counter 50	4	10	3	0.4573	0.1949	54.27\%	7-13	3-9
Counter 51	2	10	3	0.2671	0.1521	73.29\%	7-13	5-11
Counter 52	3	10	3	0.3687	0.1827	63.13\%	7-13	4-10
Counter 53	7	11	3	0.6523	0.1822	34.77\%	8-14	1-7
Counter 54	3	10	3	0.3651	0.1774	63.49\%	7-13	4-10
Counter 55	5	10	3	0.5348	0.19	46.52\%	7-13	2-8
Counter 56	4	10	3	0.4511	0.1943	54.89\%	7-13	3-9
Average	5	11	3	0.4971	0.1639	50.29\%	8-14	3-8

From Table 6, we get that the average of the estimators of the actual number of the product sales at a counter with the rate of product sales low is ranging between 6-11 pieces with a gap of 2-7 pieces compared to the number of the product sales listed in
the report (obtained from the system). The mean percentage of underreporting counts of product sales is 49.20% or ranged from 11.70% to 77.46%.

Tabel 6: The Estimators of Model Parameter at Counter with The Low Rate of Product Sales

Counter	y_{i}	$\widehat{y_{l}^{*}}$	$\operatorname{std}\left(\widehat{y_{l}}\right)$	$\widehat{p_{l}^{*}}$	$\operatorname{std}\left(\widehat{p_{l}^{*}}\right)$	$\widehat{q_{l}^{*}} x 100 \%$	$\widehat{y_{l}^{*}} \pm$ $\operatorname{std}\left(\widehat{y}_{l}\right)$	$\left[\widehat{y_{i}^{*}} \pm\right.$ std $\left.\left(\widehat{y_{l}}\right)\right]-y_{i}$
Counter 1	1	8	3	0.2313	0.1586	76.87%	$5-11$	$4-10$
Counter 2	5	8	3	0.6114	0.202	38.86%	$6-11$	$1-6$
Counter 3	9	11	2	0.7924	0.1471	20.76%	$9-13$	$0-4$
Counter 4	8	10	2	0.7657	0.1556	23.43%	$8-12$	$0-4$
Counter 5	2	8	3	0.3261	0.181	67.39%	$5-11$	$3-9$
Counter 6	3	8	3	0.444	0.2047	55.60%	$5-11$	$2-8$
Counter 7	8	10	2	0.7593	0.1615	24.07%	$8-12$	$0-4$
Counter 8	3	8	3	0.4362	0.2014	56.38%	$5-11$	$2-8$
Counter 9	4	8	3	0.5295	0.201	47.05%	$5-11$	$1-7$
Counter 10	3	8	3	0.4364	0.1987	56.36%	$5-11$	$2-8$
Counter 11	3	8	3	0.4275	0.195	57.25%	$5-11$	$2-8$
Counter 12	1	8	3	0.2336	0.1632	76.64%	$5-11$	$4-10$
Counter 13	13	14	1	0.8706	0.1068	12.94%	$13-16$	$0-3$
Counter 14	14	15	1	0.883	0.0943	11.70%	$14-16$	$0-2$
Counter 15	4	8	3	0.5293	0.1995	47.07%	$5-11$	$1-7$
Counter 16	3	8	3	0.4364	0.2006	56.36%	$5-11$	$2-8$
Counter 17	4	8	3	0.5256	0.203	47.44%	$5-11$	$1-7$
Counter 18	4	8	3	0.5415	0.1993	45.85%	$5-11$	$1-7$
Counter 19	2	8	3	0.3401	0.1861	65.99%	$5-11$	$3-9$
Counter 20	2	8	3	0.3398	0.1875	66.02%	$5-11$	$3-9$
Counter 21	1	8	3	0.2352	0.1611	76.48%	$5-11$	$4-10$
Counter 22	5	8	3	0.6071	0.1986	39.29%	$6-11$	$1-6$
Counter 23	6	9	2	0.6648	0.1851	33.52%	$7-11$	$1-5$
Counter 24	3	8	3	0.4265	0.1951	57.35%	$5-11$	$2-8$
Counter 25	8	10	2	0.7521	0.1571	24.79%	$8-12$	$0-4$
Counter 26	9	11	2	0.7906	0.1432	20.94%	$9-13$	$0-4$
Counter 27	7	10	2	0.717	0.175	28.30%	$7-12$	$0-5$
Counter 28	3	8	3	0.4355	0.2035	56.45%	$5-11$	$2-8$
Counter 29	6	9	2	0.658	0.1905	34.20%	$7-12$	$1-6$
Counter 30	1	8	3	0.2254	0.1666	77.46%	$5-11$	$4-10$
Counter 31	3	8	3	0.4478	0.2051	55.22%	$5-11$	$2-8$
Counter 32	1	8	3	0.2375	0.1699	76.25%	$5-11$	$4-10$
Counter 33	2	8	3	0.3242	0.184	67.58%	$5-11$	$3-9$
Counter 34	3	8	3	0.4395	0.2014	56.05%	$5-11$	$2-8$
Counter 35	2	8	3	0.3385	0.1894	66.15%	$5-11$	$3-9$
Counter 36	4	8	3	0.5297	0.2061	47.03%	$5-11$	$1-7$
Average	4	9	3	0.5080	0.18	49.20%	$6-11$	$2-7$

From Table 7, we get that the average of the estimators of the actual number of the product sales at a counter with the rate of product sales very low is ranging between

4-13 pieces with a gap of 1-9 pieces compared to the number of the product sales listed in the report (obtained from the system). The mean percentage of underreporting counts of product sales is 52.88% or ranged from 32.10% to 73.66%.

Tabel 7: The Estimators of Model Parameter at Counter with The Very Low Rate of Product Sales

Counter	$y_{\boldsymbol{i}}$	$\widehat{y_{l}^{*}}$	$\operatorname{std}\left(\widehat{y_{l}}\right)$	$\widehat{p_{l}^{*}}$	$\operatorname{std}\left(\widehat{p_{l}^{*}}\right)$	$\widehat{q_{l}^{*}} x 100 \%$	$\widehat{y_{l}^{*}} \pm$ $\operatorname{std}\left(\widehat{y_{l}}\right)$	$\left[\widehat{y_{i}^{*}} \pm\right.$ $\left.\operatorname{std}\left(\widehat{\widehat{l}_{l}}\right)\right]-y_{i}$
Counter 1	1	8	5	0.2634	0.2042	73.66%	$3-13$	$2-12$
Counter 2	6	9	4	0.679	0.2058	32.10%	$5-13$	$0-7$
Average	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{0 . 4 7 1 2}$	$\mathbf{0 . 2 0 5}$	$\mathbf{5 2 . 8 8 \%}$	$\mathbf{4 - 1 3}$	$\mathbf{1 - 9}$

6. Conclusion

The estimation of the parameters of the regression model for underreported counts performed through by a Bayesian approach and Markov Chain Monte Carlo simulation using Gibbs sampling algorithm, is depend on the determination of burn in period. Determination of burn in period or deleting the first B iterations of the algorithm is done to reduce or avoid the effect of the initial value of the specified parameter. These initial values may affect the posterior summary if they have a huge gap from the highest value of the posterior probability.

Determination of burn in period is done in line with the convergence of algorithm conducted through trace plot, autocorrelation plot and ergodic mean plot. The determination of burn in period is easier using ergodic mean plot than using the trace plot or autocorrelation plot. Ergodic mean plot describes the average simulation values on current iteration. Then, the researcher can more easily determine the first B iterations to be removed. While the trace plot only illustrates the randomness pattern of simulated results and autocorrelation plot only describes the value of autocorrelation between successive iterations. After burn in period is determined, the estimated value of the underreported model parameters is the average of the simulated sample values of each parameter calculated from sample value after burn in period until the last iteration.

The results of estimation clearly showed the percentage of underreporting counts is very high, either on the counter whose sales rate is very high, high, low or very low. it also showed a gap between undamaged product sales and the actual number. The gap is the number of damaged product sales. In order to reduce the risks of the errors on the marketing strategies (see Figure 1), these estimation value can be more useful.

References

Moreno, E., and Giron, J. (1998). Estimating with incomplete count data A Bayesian approach. Journal of Statistical Planning and Inference, 66(1), 147-159.

Neubauer, G., Djuraš, G., and Friedl, H. (2011). Models for underreporting: A Bernoulli sampling approach for reported counts. Austrian journal of statistics, 40(1\&2), 8592.

Papadatos, N. (2005). Characterizations of discrete distributions using the Rao-Rubin condition. Journal of statistical planning and inference, 135(1), 222-228.

Pararai, M., Famoye, F., and Lee, C. (2010). Generalized poisson-poisson mixture model for misreported counts with an application to smoking data. Journal of Data Science, 8(4), 607-617.

Sinaga, U. I. (2013). Faktor-Faktor yang Mempengaruhi Volume Penjualan Sepeda Motor Honda Vario pada PT. Capella Dinamik Nusantara Pekanbaru. Riau University, Pekanbaru.

Winkelmann, R. (1996). Markov chain Monte Carlo analysis of underreported count data with an application to worker absenteeism. Empirical Economics, 21(4), 575587.

[^0]: * Received Des 2017; Accepted Apr 2018; Published online on Apr 2018

