Penggerombolan Kabupaten/Kota di Indonesia Berdasarkan Indikator Indeks Pembangunan Manusia Menggunakan Metode K-Means dan Fuzzy C-Means
DOI:
https://doi.org/10.29244/xplore.v11i1.855Keywords:
cluster analysis, fuzzy c-means, human development index, k-meansAbstract
The achievement of the human development index in Indonesia differs between regions with striking gaps occurring in the western and eastern parts of Indonesia. This difference in achievement can be seen more clearly by grouping regencies/municipalities in Indonesia based on the four indicators of the human development index. With this aim, this study uses the k-means and fuzzy c-means methods to determine the optimal cluster size with two distance approaches, namely the Euclidean and Manhattan distances on the human development index indicators data in 2020. In addition, this study also seeks to identify the distribution of regencies/municipalities based on the characteristics of the human development index indicators in the clustering result. The result is that the best distance measure is Euclidean distance with optimal cluster size is four for k-means and six for fuzzy c-means. In addition, the clustering results obtained by the k-means method are more optimal than the fuzzy c-means because the evaluation value is better. In general, the four clusters formed were in accordance with the grouping carried out by BPS with the percentage of conformity reaching 66,54%. In summary, most regencies/municipalities on the Island of Sumatera, Java, Borneo and Sulawesi have higher life expectancy and percapita expenditure than many regencies/municipalities in the Nusa Tenggara Islands (besides Bali), Moluccas and Papua. Very high achievement for each HDI indicators is dominated by the capital city of each province with unfavorable conditions occurring in most regencies/municipalities in Papua Province.