Analysis of Net Enumeration Rate of Senior High School Using Fixed-Effect Clustered-Robust Standard Error Model
Analisis Angka Partisipasi Murni Sekolah Menengah Menggunakan Model Fixed-Effect Clustered Robust Standard Error
DOI:
https://doi.org/10.29244/ijsa.v6i2p270-286Keywords:
fixed-effect clustered-robust standard error, fixed effect model, net enumeration rate, senior high schoolAbstract
The Net Enumeration Rate (NER) of senior high school (SHS) in Indonesia in 2017-2019 always be the lowest than the other education levels and cannot fulfill the target of the 2014-2019 National Medium-Term Development Plan (RPJMN). This study aims to analyze the determinants of NER of SHS in Indonesia 2017-2019 using the panel data regression method. The independent variables include child labor, child marriage, Smart Indonesia Program (PIP), repeat rates, and poverty. The NER of SHS is the dependent variable. Based on the modeling, heteroscedasticity and autocorrelation problems are found. The fixed-effect clustered-robust standard error method is used to solve these problems. The results show that the NER of SHS increased every year, and poverty decreased every year. Meanwhile, other variables fluctuate during 2017-2019. Furthermore, it is found that child labor and poverty significantly affect the NER of SHS in Indonesia. Meanwhile, child marriage, PIP, and repeat rates have no significant effect. This study can be used by local government to implement more effective policies based on the factor that do have significant effects on NER of SHS in Indonesia in 2017-2019.
Downloads
References
Andrews, D. W. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica: Journal of the Econometric Society, 817–858.
Cameron, A. C., & Miller, D. L. (2015). A practitioner’s guide to cluster-robust inference. Journal of Human Resources, 50(2): 317–372.
Dewandoko, T. A., & Setiadi, Y. (2019). Determinan angka partisipasi murni SMA/Sederajat KTI Tahun 2016 dengan metode GWR. Prosiding Seminar Pendidikan Matematika Dan Matematika, 1, 185–192.
Gujarati, D. (2009). Basic econometrics Tata McGraw-Hill Education.
Hermawan, W., Maipita, I., & Wahyudi, S. T. (2020). Determinan Angka Partisipasi Murni: Studi pada Penduduk Miskin Tingkat Provinsi di Indonesia. Jurnal Ilmu Ekonomi Dan Pembangunan, 20(1): 1–11.
Karini, P. (2018). Pengaruh Tingkat Kemiskinan Terhadap Angka Partisipasi Sekolah Usia 16—18 Tahun di Provinsi Kepulauan Bangka Belitung. Al-Ishlah: Jurnal Pendidikan, 10(1): 103–115.
KUSWORO, K., & ISLAMIYAH, S. (2019). Pengaruh Lingkungan Sekolah Terhadap Minat Melanjutkan Kejenjang Sekolah Menengah Atas. EDUKA: Jurnal Pendidikan, Hukum, Dan Bisnis, 4(1).
Nandi, N. (2016). Pekerja anak dan permasalahannya. Jurnal Geografi Gea, 6(1).
Rahmatin, U. Z., & Soejoto, A. (2017). Pengaruh tingkat kemiskinan dan jumlah sekolah terhadap angka partisipasi sekolah (APS) di Kota Surabaya. JPEKA: Jurnal Pendidikan Ekonomi, Manajemen Dan Keuangan, 1(2): 127–140.
Rusydi, R. (2017). Pengaruh Program Keluarga Harapan (PKH) Terhadap Partisipasi Pendidikan di Kecamatan Indrajaya Kabupaten Pidie. E-Mabis: Jurnal Ekonomi Manajemen Dan Bisnis, 17(1): 77–84.
Sugardha, I. A. (2018). Upaya ke arah wajib belajar 12 tahun di kabupaten majalengka; pendekatan kebijakan. Jurnal Administrasi Pendidikan, 25(2): 252–263.
Vinod, T., Daelani, M., Dhareshwar, A., Kauffman, D., Kishor, A., Lopez, R. E., & Wang, Y. (2000). The Quality Of Growth. Washington D.C.: Oxford University Press.