The Model of Per-Capita Expenditure Figures in Sumatera Selatan uses a Geographically Weighted Panel Regression
Model Angka Pengeluaran Per-Kapita di Sumatera Selatan menggunakan Geographically Weighted Panel Regression
DOI:
https://doi.org/10.29244/ijsa.v5i1p61-74Abstract
The Geographically Weighted Panel Regression (GWPR) is a development of a global regression model where the basic idea is taken from a combination of panel data and GWR. The GWPR model is built from the point approach method, which is based on the position of the coordinates of latitude and longitude. The parameters for the regression model at each location will produce different values. GWPR can accommodate spatial effects, so that it can better explain the relationship between response variables and predictors. The purpose of this study is to compare the GWPR model with the Fixed Gaussian and Adaptive Bisquare weighting functions based on the AIC value. The data used in this study is secondary data taken from the website of the Central Statistics Agency (BPS) in the form of Per-Capita Expenditure Figures in South Sumatra in 2013-2019. This research results that in the case of the Per-Capita Expenditure Rate (AP), it is better to use the GWPR method with a fixed gaussian weighting function in the modeling, where the resulting coefficient of determination is 95.81% rather than adaptive bisquare with a determination coefficient of 93.3%. The factors that influence the Per-Capita Expenditure Rate (AP) in South Sumatra on the fixed gaussian weighting are divided into 6 groups, while the adaptive bisquare is divided into 2 groups.
Downloads
References
Arisanti, R. 2011. Model Regresi Spasial Untuk Deteksi Faktor-Faktor Kemiskinan Di Provinsi Jawa Timur. Tesis Fakultas Statistika IPB. Bogor. Tidak Dipublikasikan.
Atmajaya, J. 2014. Kontribusi Infrastruktur terhadap Pertumbuhan Ekonomi Sumatera Selatan. Tesis. Yogyakarta: Universitas Gadjah Mada.
BPS. 2011. Kegiatan Percepatan Penyediaan Data Statistik dalam Rangka Kebijakan Dana Perimbangan Tahun 2011. Jakarta: Badan Pusat Statistik.
BPS. 2014. Indeks Pembangunan Manusia Metode Baru. Jakarta: BPS.
Bruna, F dan Yu, D. 2013. Geographically Weighted Panel Regression. XI Congreso Galego de Estaticae Investigacion de Operations, A Coruna.
Cai, R., Yu, D., dan Oppenheimer, M. 2014. Estimating the Spatial Varying Responses of Corn Yields to Weather Variations using Geographically Weigted Panel Regression. Journal of Agricultural and Resource Economics, pp(230-252).
Fotheringham, A. S., Brunsdon, C. dan Charlton, M. 2002. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley.
Greene, W. 2000. Econometric Analysis. New Jersey: Prentice-Hall Inc.
Munikah, T., Henny P., dan Rahma F. 2014. Pemodelan Geographically Weighted Regression dengan Pembobot Fixed Gaussian Kernel pada Data Spasial (Studi Kasus Ketahanan Pangan di Kabupaten Tanah Laut Kalimantan Selatan), Jurnal NaturalB, Vol (2), No(3) Hal (296-302).
Nufusia, A., Alamudi, A. dan Kusumaningrum. Regresi Terboboti Geografis Untuk Analisis Pendapatan Asli Daerah Kabupaten Di Provinsi Aceh. Vol. 1(1):e1(1-8). Bogor : Departemen Statistika FMIPA IPB, 2013.
Nurhamidah, R. dan Atik, M S. 2014. Determinan Konvergensi Pendapatan di Provinsi Sumatra Selatan. Jurnal Ekonomi dan Pembangunan Indonesia. Vol. 15 No. 1, pp 71-90.
Nurkuntari, Yuni., Fatkhurokhman F., dan Darsyah M Y. Analisis Jalur Terhadap Faktor-Faktor yang mempengaruhi Indeks Pembangunan Manusia. Majalah Ekonomi dan Bisnis, pp 101-108.
Prasetyo, D A. 2013. Pemodelan Data Kesehatan Kabupaten Banyuwangi dengan Regresi Terboboti Geografis. Xplore, 2013. Vol 1(1):e-4(1-8). Departemen Statistika FMIPA IPB.
Rosadi, D, 2010, Analisis Ekonometrika & Runtun Waktu Terapan dengan R, Yogyakarta :Andi.
Sari, S. P. 2008. Ketimpangan Pembangunan Daerah Tingkat II di Provinsi Sumsel Tahun 2000-2006. Skripsi. Jakarta: Sekolah Tinggi Ilmu Statistik.
Yeniwati. 2013. Ketimpangan Ekonomi Antar Provinsi di Sumatera. Jurnal Kajian Ekonomi, 2(3), 1-21.
Yu,D. 2010. Exploring Spatiotemporally Varying Regressed Relationships: The Geographically Weighted Panel Regression Analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol 38(2), pp(134-139).
Yu, D., dan Bruna, F. 2016. Geographically Weighted Panel Regression and Development Accounting for European Regions, International Conference on Regional Science, https://old.reunionesdeestudiosregionales.org/Santiago2016/htdocs/pdf/p1763.pdf, Diakses pada tanggal 23 Februari 2019.
Yu, D., Zhang Y., Wu X., Li D., Li G. 2020., The varying effects of accessing high-speed rail system on China’s county development: A geographically weighted panel regression analysis, Land Use Policy 100 (2021) 104935.
Yustisia, G. 2017. Pemodelan Geographically Weighted Regression (GWR) dengan Matriks Pembobot Fixed Gaussian Kernel dan Queen Contiguity pada Data Demam Berdarah. Magister Tesis Fakultas MIPA Universitas Brawijaya, Malang. Tidak Dipublikasikan.